Searching for objects is a fundamental skill for robots. As such, we expect object search to eventually become an off-the-shelf capability for robots, similar to e.g., object detection and SLAM. In contrast, however, no system for 3D object search exists that generalizes across real robots and environments. In this paper, building upon a recent theoretical framework that exploited the octree structure for representing belief in 3D, we present GenMOS (Generalized Multi-Object Search), the first general-purpose system for multi-object search (MOS) in a 3D region that is robot-independent and environment-agnostic. GenMOS takes as input point cloud observations of the local region, object detection results, and localization of the robot's view pose, and outputs a 6D viewpoint to move to through online planning. In particular, GenMOS uses point cloud observations in three ways: (1) to simulate occlusion; (2) to inform occupancy and initialize octree belief; and (3) to sample a belief-dependent graph of view positions that avoid obstacles. We evaluate our system both in simulation and on two real robot platforms. Our system enables, for example, a Boston Dynamics Spot robot to find a toy cat hidden underneath a couch in under one minute. We further integrate 3D local search with 2D global search to handle larger areas, demonstrating the resulting system in a 25m$^2$ lobby area.
翻译:搜索天体是机器人的基本技能。 因此, 我们期待天体搜索最终会成为机器人的现成能力, 类似于天体探测和 SLAM。 然而, 相比之下, 不存在一个三维天体搜索系统, 能够在真实的机器人和环境中泛泛的三维天体搜索系统。 在本文中, 借助最近利用奥克特里结构代表3D信仰的理论框架, 我们展示了 GenMOS( 通用多对象搜索), 3D 区域中第一个多目标搜索通用系统( MOS), 是一个多目标搜索系统( MOS), 这个系统是机器人独立和环保的3D 区域。 GenMOS 将本地区域、 目标检测结果和机器人观点的本地化作为输入点观测结果。 特别是, GenMOS使用点观测方式有三种方式:(1) 模拟封闭; (2) 告知占用和初始化的奥氏信仰; (3) 抽样一个基于信仰的图表, 避免搜寻障碍。 我们用一个系统, 将本地的25 智能系统, 和两个秘密的机器人平台中, 我们用一个智能系统, 将一个在下面的机器人平台上找到一个系统, 。</s>