With the rise in importance of personalized medicine, we trained personalized neural networks to detect tumor progression in longitudinal datasets. The model was evaluated on two datasets with a total of 64 scans from 32 patients diagnosed with glioblastoma multiforme (GBM). Contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used in this study. For each patient, we trained their own neural network using just two images from different timepoints. Our approach uses a Wasserstein-GAN (generative adversarial network), an unsupervised network architecture, to map the differences between the two images. Using this map, the change in tumor volume can be evaluated. Due to the combination of data augmentation and the network architecture, co-registration of the two images is not needed. Furthermore, we do not rely on any additional training data, (manual) annotations or pre-training neural networks. The model received an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. We show that using data from just one patient can be used to train deep neural networks to monitor tumor change.
翻译:随着个性化医学重要性的提高,我们培训了个性化神经网络,以在纵向数据集中检测肿瘤的演进。模型是在两个数据集上评价的,总共对32名被诊断患有Glioblastoma 多元形(GBM)的32名病人进行了64次扫描。本研究使用了对比强化的脑磁共振成像(MRI)图象T1w序列。随着个性化医学的重要性的提高,我们培训了他们自己的神经网络,只使用来自不同时间点的两张图像。我们的方法是用瓦瑟斯坦-GAN(遗传对抗网络)这个不受监督的网络结构来绘制两个图像之间的差异。使用这张地图可以对肿瘤数量的变化进行评估。由于数据增强和网络结构的结合,因此不需要对两种图像进行共同登记。此外,我们并不依赖任何额外的培训数据、(manual)说明或培训前神经网络。模型收到了用于肿瘤变化的AUC-Sc核心0.87。我们还引入了经过修改的RANO标准,可以对66%的神经网络进行深度监测。我们用这些数据来显示。我们用这些数据从一个从一个深度的温度到一个监测。