The brain's spatial orientation system uses different neuron ensembles to aid in environment-based navigation. One of the ways brains encode spatial information is through grid cells, layers of decked neurons that overlay to provide environment-based navigation. These neurons fire in ensembles where several neurons fire at once to activate a single grid. We want to capture this firing structure and use it to decode grid cell data. Understanding, representing, and decoding these neural structures require models that encompass higher order connectivity than traditional graph-based models may provide. To that end, in this work, we develop a topological deep learning framework for neural spike train decoding. Our framework combines unsupervised simplicial complex discovery with the power of deep learning via a new architecture we develop herein called a simplicial convolutional recurrent neural network (SCRNN). Simplicial complexes, topological spaces that use not only vertices and edges but also higher-dimensional objects, naturally generalize graphs and capture more than just pairwise relationships. Additionally, this approach does not require prior knowledge of the neural activity beyond spike counts, which removes the need for similarity measurements. The effectiveness and versatility of the SCRNN is demonstrated on head direction data to test its performance and then applied to grid cell datasets with the task to automatically predict trajectories.
翻译:大脑的空间定向系统使用不同的神经集合来帮助基于环境的导航。 大脑编码空间信息的方法之一是通过网格细胞, 层甲板神经元, 以提供基于环境的导航。 这些神经元在环形中燃烧, 数个神经元同时点火以激活一个单一的网格。 我们想要捕捉这个燃烧结构, 并用它解码网格数据。 理解、 代表并解码这些神经结构需要包含比传统图形模型可能提供的更高顺序连接的模型。 为此, 我们为神经螺旋列解码开发了一个表层深层次学习框架。 我们的框架将非超超超常的模拟复杂发现与通过我们在此开发的新结构进行深层学习的力量结合起来, 称之为一个简单化的卷心神经网络( SCRNN) 。 简单复杂、 表面空间, 不仅使用脊椎和边缘, 而且还使用更高维度的物体, 自然的图形和捕捉摸的图像。 此外, 这个方法不需要先前的神经系统测试, 也不需要对恒定的系统进行测试。