Virtual reality (VR) environments have greatly expanded opportunities for immersive exploration, yet physically navigating these digital spaces remains a significant challenge. In this paper, we present the conceptual framework of NAVIS (Navigating Virtual Spaces with Immersive Scooters), a novel system that utilizes a scooter-based interface to enhance both navigation and interaction within virtual environments. NAVIS combines real-time physical mobility, haptic feedback, and CAVE-like (Cave Automatic Virtual Environment) technology to create a realistic sense of travel and movement, improving both spatial awareness and the overall immersive experience. By offering a more natural and physically engaging method of exploration, NAVIS addresses key limitations found in traditional VR locomotion techniques, such as teleportation or joystick control, which can detract from immersion and realism. This approach highlights the potential of combining physical movement with virtual environments to provide a more intuitive and enjoyable experience for users, opening up new possibilities for applications in gaming, education, and beyond.
翻译:暂无翻译