We give a Markov chain based perfect sampler for uniform sampling solutions of constraint satisfaction problems (CSP). Under some mild Lov\'asz local lemma conditions where each constraint of the CSP has a small number of forbidden local configurations, our algorithm is accurate and efficient: it outputs a perfect uniform random solution and its expected running time is quasilinear in the number of variables. Prior to our work, perfect samplers are only shown to exist for CSPs under much more restrictive conditions (Guo, Jerrum, and Liu, JACM'19). Our algorithm has two components: 1. A simple perfect sampling algorithm using bounding chains (Huber, STOC'98; Haggstrom and Nelander, Scandinavian Journal of Statistics'99). This sampler is efficient if each variable domain is small. 2. A simple but powerful state tensorization trick to reduce large domains to smaller ones. This trick is a generalization of state compression (Feng, He, and Yin, STOC'21). The crux of our analysis is a simple information percolation argument which allows us to achieve bounds even beyond current best approximate samplers (Jain, Pham, and Vuong, ArXiv'21). Previous related works either use intricate algorithms or need sophisticated analysis or even both. Thus we view the simplicity of both our algorithm and analysis as a strength of our work.
翻译:我们给一个基于Markov链的完美取样器,用于统一抽样解决约束性满意度问题(CSP)。在某些温和的Lov\'asz当地莱马条件下,CSP的每个制约因素都有少量被禁止的地方配置,我们的算法是准确和有效率的:它产生一个完全统一的随机解决办法,其预期的运行时间是变量数的准线性。在我们的工作之前,只显示在更严格得多的条件下(Guo、Jerrum和刘,JACM'19),CSP的完美取样器存在。我们的算法有两个组成部分:1. 使用捆绑链的简单完美的取样算法(Huber,STOC'98;Haggstrom和Nelander,斯堪的纳维亚统计杂志'99)。如果每个变量范围小,这个采样器是有效的。2. 一个简单但强大的状态指数化把大领域缩小为小范围。在我们的工作之前,这个把国家压缩法(Feng、He和Yin,STOC'21)加以概括化。我们的分析的核心是简单的信息透视理学论点,使我们甚至可以超越目前最精密的精密的样本分析。