Multivariate, heteroscedastic errors complicate statistical inference in many large-scale denoising problems. Empirical Bayes is attractive in such settings, but standard parametric approaches rest on assumptions about the form of the prior distribution which can be hard to justify and which introduce unnecessary tuning parameters. We extend the nonparametric maximum likelihood estimator (NPMLE) for Gaussian location mixture densities to allow for multivariate, heteroscedastic errors. NPMLEs estimate an arbitrary prior by solving an infinite-dimensional, convex optimization problem; we show that this convex optimization problem can be tractably approximated by a finite-dimensional version. We introduce a dual mixture density whose modes contain the atoms of every NPMLE, and we leverage the dual both to show non-uniqueness in multivariate settings as well as to construct explicit bounds on the support of the NPMLE. The empirical Bayes posterior means based on an NPMLE have low regret, meaning they closely target the oracle posterior means one would compute with the true prior in hand. We prove an oracle inequality implying that the empirical Bayes estimator performs at nearly the optimal level (up to logarithmic factors) for denoising without prior knowledge. We provide finite-sample bounds on the average Hellinger accuracy of an NPMLE for estimating the marginal densities of the observations. We also demonstrate the adaptive and nearly-optimal properties of NPMLEs for deconvolution. We apply the method to two astronomy datasets, constructing a fully data-driven color-magnitude diagram of 1.4 million stars in the Milky Way and investigating the distribution of chemical abundance ratios for 27 thousand stars in the red clump.
翻译:多种变异性, 外观性误差, 使许多大规模拆卸问题的统计推论更加复杂。 经验型贝耶斯在这样的环境下具有吸引力, 但标准的参数性方法则基于对先前分布形式的假设, 其形式可能很难解释, 并引入不必要的调试参数。 我们扩展了高斯安位置混合密度的非参数性最大可能性估测器( NPMLE), 以允许多变性, 超度性差差。 国家防范机制在解决一个无限的、 共流优化问题时预估了一种任意性。 我们显示, 共振优化的恒星优化问题可以通过一个有限维度的版本 。 我们引入一种双重混合的混合物密度, 其模式包含每个国家防范机制的原子, 并且我们同时在多变异性环境中显示非异性, 并构建支持国家防范机制的千年线。 以国家防范机制为基础的实证 Bayes 峰值手段是低度的, 意味着它们非常接近于远值的直径直值性观测, 近于前的直径直径直径直值性值性观测值性值性值性, 。 我们证明前的直径直径直径向前的亚值数据在前的轨道上, 提供了一种最深度数据, 。