Recent works attempt to improve scene parsing performance by exploring different levels of contexts, and typically train a well-designed convolutional network to exploit useful contexts across all pixels equally. However, in this paper, we find that the context demands are varying from different pixels or regions in each image. Based on this observation, we propose an Adaptive Context Network (ACNet) to capture the pixel-aware contexts by a competitive fusion of global context and local context according to different per-pixel demands. Specifically, when given a pixel, the global context demand is measured by the similarity between the global feature and its local feature, whose reverse value can be used to measure the local context demand. We model the two demand measurements by the proposed global context module and local context module, respectively, to generate adaptive contextual features. Furthermore, we import multiple such modules to build several adaptive context blocks in different levels of network to obtain a coarse-to-fine result. Finally, comprehensive experimental evaluations demonstrate the effectiveness of the proposed ACNet, and new state-of-the-arts performances are achieved on all four public datasets, i.e. Cityscapes, ADE20K, PASCAL Context, and COCO Stuff.


翻译:最近的工作试图通过探索不同程度的环境来改善场景分辨,并典型地培训一个设计周密的革命网络,以平等地利用所有像素的有用环境。然而,在本文件中,我们发现背景需求与每个图像的不同像素或区域不同。根据这一观察,我们建议建立一个适应性环境网络(ACNet),通过竞争性地结合全球背景和地方背景,根据不同的人均需求来捕捉像素。具体地说,如果给一个像素,全球背景需求是通过全球特征与地方特征之间的相似性来衡量的,而全球特征与地方特征的相似性,其反向价值可以用来测量当地背景需求。我们用拟议的全球背景模块和当地背景模块分别模拟两种需求测量,以产生适应性环境特征。此外,我们输入多个这样的模块,以在不同级别的网络中建立若干适应性环境区块,以获得粗略的至细微的结果。最后,全面的实验性评估表明,拟议的ACNet和新的状态表现在所有四个公共数据背景下都取得了效果,例如,Stax20 和CO-CAR。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Arxiv
11+阅读 · 2019年1月24日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员