Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these techniques, which train CNNs using external data, are restricted to the observation models that have been used in the training phase. A recent alternative that does not have this drawback relies on learning the target image using internal learning. One such prominent example is the Deep Image Prior (DIP) technique that trains a network directly on the input image with a least-squares loss. In this paper, we propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN. We demonstrate two ways to use our framework. In the first one, where no explicit prior is used, we show that the proposed approach outperforms other internal learning methods, such as DIP. In the second one, we show that our GSURE-based loss leads to improved performance when used within a plug-and-play priors scheme.
翻译:在许多图像处理应用程序中,例如变形和超分辨率等,出现了不正确的问题。近年来,基于深层神经神经网络(CNNs)的解决方案显示了巨大的希望。然而,这些用外部数据培训CNN的技巧大多局限于培训阶段使用的观测模型。最近一个没有退步的替代办法依赖于利用内部学习来学习目标图像。其中一个突出的例子就是深图像前(DIP)技术,该技术直接对输入图像的网络进行最小度损失的输入图像培训。在本文中,我们提出了一个新的图像恢复框架,其基础是最大限度地减少损失功能,其中包括通用的Stein Unbised风险刺激器(GSURE)的“预测转换”和CNN对潜在图像的参数化。我们展示了使用我们框架的两种方法。在第一个方面,没有使用明确的前期,我们展示了拟议方法优于其他内部学习方法,例如DIP。在第二个方面,我们提出了一个新的图像恢复框架,我们展示了我们以前使用的GSURE的性能模型,在以前的模型中,我们展示了我们曾经使用过的性能升级的模型。