Physics-informed neural networks (PINNs) impose known physical laws into the learning of deep neural networks, making sure they respect the physics of the process while decreasing the demand of labeled data. For systems represented by Ordinary Differential Equations (ODEs), the conventional PINN has a continuous time input variable and outputs the solution of the corresponding ODE. In their original form, PINNs do not allow control inputs neither can they simulate for long-range intervals without serious degradation in their predictions. In this context, this work presents a new framework called Physics-Informed Neural Nets for Control (PINC), which proposes a novel PINN-based architecture that is amenable to \emph{control} problems and able to simulate for longer-range time horizons that are not fixed beforehand. The framework has new inputs to account for the initial state of the system and the control action. In PINC, the response over the complete time horizon is split such that each smaller interval constitutes a solution of the ODE conditioned on the fixed values of initial state and control action for that interval. The whole response is formed by feeding back the predictions of the terminal state as the initial state for the next interval. This proposal enables the optimal control of dynamic systems, integrating a priori knowledge from experts and data collected from plants into control applications. We showcase our proposal in the control of two nonlinear dynamic systems: the Van der Pol oscillator and the four-tank system.


翻译:物理知情神经网络(PINNs)在深神经网络的学习中强加已知物理法则,确保它们尊重过程的物理,同时减少对标签数据的需求。对于普通差异方程式(ODEs)所代表的系统,常规PINN具有连续的时间输入变量和输出,对应的 ODE 的解决方案。在原始形式上,PINN 不允许控制投入,也不能在不严重降解预测的情况下模拟长距离输入。在这方面,这项工作提出了一个称为物理化神经网以控制为条件的新框架(PINC),它提出了一个基于PIN的新型PIN结构,适合\emph{control}问题,并能够模拟不事先固定的远程时间范围。这个框架有新的投入,以考虑系统的初始状态和控制动作。在PINC中,完全的时间跨度的反应是分裂的,每个小间隔都是以初始状态和控制动作的固定值为条件的。整个反应是将一个基于新的 PINN结构的架构结构结构,从我们最初的动态控制状态的模型中反馈了四个先期系统,我们收集的模型的模型,我们收集的系统的初步控制状态的模型,我们最初的模型的模型的模型的模型的模型的模型的系统将使得我们的模型的模型的模型的系统能动控制提议。

0
下载
关闭预览

相关内容

专知会员服务
94+阅读 · 2021年8月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年11月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
6+阅读 · 2018年10月3日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员