Accurate morphological classification of white blood cells (WBCs) is an important step in the diagnosis of leukemia, a disease in which nonfunctional blast cells accumulate in the bone marrow. Recently, deep convolutional neural networks (CNNs) have been successfully used to classify leukocytes by training them on single-cell images from a specific domain. Most CNN models assume that the distributions of the training and test data are similar, i.e., the data are independently and identically distributed. Therefore, they are not robust to different staining procedures, magnifications, resolutions, scanners, or imaging protocols, as well as variations in clinical centers or patient cohorts. In addition, domain-specific data imbalances affect the generalization performance of classifiers. Here, we train a robust CNN for WBC classification by addressing cross-domain data imbalance and domain shifts. To this end, we use two loss functions and demonstrate their effectiveness in out-of-distribution (OOD) generalization. Our approach achieves the best F1 macro score compared to other existing methods and is able to consider rare cell types. This is the first demonstration of imbalanced domain generalization in hematological cytomorphology and paves the way for robust single cell classification methods for the application in laboratories and clinics.


翻译:精确的白细胞(WBCs)形态分类是白血病诊断的重要步骤,这种疾病中非功能性的原始细胞在骨髓中积累。最近,深度卷积神经网络(CNNs)已经成功用于对白细胞进行分类,通过对来自特定域的单细胞图像进行训练。大多数CNN模型认为训练和测试数据分布相似,即数据是独立且同分布的。因此,它们对不同染色程序、放大倍数、分辨率、扫描仪或成像协议以及临床中心或患者群体的变化不具有鲁棒性。此外,特定领域数据的失衡也会影响分类器的泛化性能。在本研究中,我们通过解决跨域数据不平衡和域偏移问题来训练鲁棒的CNN以进行WBC分类。为此,我们使用了两个损失函数,并展示了它们在超出分布(OOD)泛化方面的有效性。我们的方法实现了比其他现有方法更好的F1宏分数,并能够考虑罕见的细胞类型。这是在血液细胞形态学领域中首次展示基于数据失衡的领域泛化,并为实验室和临床应用提供了鲁棒的单细胞分类方法的基础。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员