The detection of state-sponsored trolls acting in information operations is an unsolved and critical challenge for the research community, with repercussions that go beyond the online realm. In this paper, we propose a novel AI-based solution for the detection of state-sponsored troll accounts, which consists of two steps. The first step aims at classifying trajectories of accounts' online activities as belonging to either a state-sponsored troll or to an organic user account. In the second step, we exploit the classified trajectories to compute a metric, namely "troll score", which allows us to quantify the extent to which an account behaves like a state-sponsored troll. As a study case, we consider the troll accounts involved in the Russian interference campaign during the 2016 US Presidential election, identified as Russian trolls by the US Congress. Experimental results show that our approach identifies accounts' trajectories with an AUC close to 99% and, accordingly, classify Russian trolls and organic users with an AUC of 90%. Finally, we evaluate whether the proposed solution can be generalized to different contexts (e.g., discussions about Covid-19) and generic misbehaving users, showing promising results that will be further expanded in our future endeavors.


翻译:在信息操作中发现国家赞助的巨怪,对于研究界来说,这是一个尚未解决的、至关重要的挑战,其影响超越了在线领域。在本文中,我们提出了一个基于AI的新解决方案,以探测国家赞助的巨怪账户,由两步组成。第一步的目的是将账户在线活动的轨迹归类为属于国家赞助的巨魔或有机用户账户。在第二步,我们利用分类的轨迹来计算一个量度,即“分数 ”, 从而使我们能够量化一个账户行为像国家赞助的巨魔。作为一个研究案例,我们考虑2016年美国总统选举期间俄罗斯干预运动所涉及的巨魔账户,被美国国会确定为俄罗斯巨魔。实验结果显示,我们的方法确定了账户的轨迹,其AUC接近99 %,因此,将俄罗斯巨魔和有机用户分类为90 %。最后,我们评估拟议的解决办法能否被概括为不同背景(例如,关于Covid-19的讨论),以及将进一步显示我们未来目标用户的前景。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年4月3日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员