Extending the idea from the recent paper by Carbonero, Hompe, Moore, and Spirkl, for every function $f\colon\mathbb{N}\to\mathbb{N}\cup\{\infty\}$ with $f(1)=1$ and $f(n)\geq\binom{3n+1}{3}$, we construct a hereditary class of graphs $\mathcal{G}$ such that the maximum chromatic number of a graph in $\mathcal{G}$ with clique number $n$ is equal to $f(n)$ for every $n\in\mathbb{N}$. In particular, we prove that there exist hereditary classes of graphs that are $\chi$-bounded but not polynomially $\chi$-bounded.
翻译:扩展Carbonero、Hompe、Moore和Spirkl最近一篇由Carbonero、Hompe、Moore和Spirkl撰写的论文中的想法,对于每个函数,如果以美元(1美元)=1美元和美元(n)\geq\binom{3n+1)3美元计算,则每个函数美元(colone\mathbb{N ⁇ to\mathb{mathb{N ⁇ to\mathb{N ⁇ cup ⁇ infty}$1美元和美元(n)=1美元和美元(n)\gqqq\binom{3},我们建造了一个世系类图($(mathcal{G})美元),这样,以美元计价($mathcal{G}为单位的图表的最大色素数等于每美元(n)美元(n)。特别是,我们证明存在着以美元(chiple)为约束但非美元($-chi)受约束的图类。