Reconfigurable intelligent surface (RIS) has become a promising technology to improve wireless communication in recent years. It steers the incident signals to create a favorable propagation environment by controlling the reconfigurable passive elements with less hardware cost and lower power consumption. In this paper, we consider a RIS-aided multiuser multiple-input single-output downlink communication system. We aim to maximize the weighted sum-rate of all users by joint optimizing the active beamforming at the access point and the passive beamforming vector of the RIS elements. Unlike most existing works, we consider the more practical situation with the discrete phase shifts and imperfect channel state information (CSI). Specifically, for the situation that the discrete phase shifts and perfect CSI are considered, we first develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming while most reported works design them alternatively. Then, we propose an improved structure (I-DQNN) based on DQNN to simplify the parameters decision process when the control bits of each RIS element are greater than 1 bit. Finally, we extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously. Our simulation results show that the two DQNN-based algorithms have better performance than traditional algorithms in the perfect CSI case, and are also more robust in the imperfect CSI case.


翻译:近年来,可重新配置的智能表面(RIS)已成为改善无线通信的一个大有希望的技术。它指导事件信号,通过控制硬件成本低、电耗低的可重新配置的被动元素,从而通过控制硬件成本低、电耗低的可重新配置的被动元素,创造一个更有利的传播环境。在本文中,我们考虑的是一个由RIS辅助的多用户多用户多投入的单元产出下链接通信系统。我们的目标是通过联合优化进入点的主动光化和测试要素的被动成形矢量,使所有用户的加权总和最大化。与大多数现有工作不同,我们考虑了离散阶段变化和不完善频道状态信息的更为实际的情况。具体地说,为了控制每个RIS元素比控制部分大一点和不完善的频道状态信息(CSI ),我们首先开发一个深度四分级化的多用户多用户多位化神经网络(DNNN) 来同时设计主动和被动的组合通信系统。然后,我们提议根据DQNNNN(I)来简化参数决策程序,当每个控制要素比比1位以上时,我们认为的C-NIS(C-NAS)的不完善的C-Q)的C-ROD-Q(C-Q)变好的C-Q),我们提出的两个案件阶段,我们又显示的C-Q-Q-Q-Q(C-Q)阶段的不完善的DQ)的不完善的DQ)升级阶段。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
0+阅读 · 2022年1月17日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员