Stochastic Computing (SC) is a computing paradigm that allows for the low-cost and low-power computation of various arithmetic operations using stochastic bit streams and digital logic. In contrast to conventional representation schemes used within the binary domain, the sequence of bit streams in the stochastic domain is inconsequential, and computation is usually non-deterministic. In this brief, we exploit the stochasticity during switching of probabilistic Conductive Bridging RAM (CBRAM) devices to efficiently generate stochastic bit streams in order to perform Deep Learning (DL) parameter optimization, reducing the size of Multiply and Accumulate (MAC) units by 5 orders of magnitude. We demonstrate that in using a 40-nm Complementary Metal Oxide Semiconductor (CMOS) process our scalable architecture occupies 1.55mm$^2$ and consumes approximately 167$\mu$W when optimizing parameters of a Convolutional Neural Network (CNN) while it is being trained for a character recognition task, observing no notable reduction in accuracy post-training.


翻译:存储计算(SC)是一种计算模式,它允许使用随机位流和数字逻辑对各种算术操作进行低成本和低功率的计算。与在二进制域内使用的常规代表方案不同,在随机域内,位流的顺序是无关紧要的,计算通常不具有确定性。在本摘要中,我们利用在转换概率操控连接内存(CBRAM)装置时的随机随机性,以高效生成随机位流,以完成深度学习(DL)参数优化,将倍增和累积(MAC)单元的大小减少5级。我们证明,在使用40纳米辅助金属氧化半导体(CMOS)处理可缩放结构过程中,在优化进化神经网络(CNN)参数时,我们花费了大约167美元,同时正在培训其进行字符识别任务,没有观察到精确度在后培训后降低。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
干货 | 深度学习论文汇总
AI科技评论
4+阅读 · 2018年1月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
干货 | 深度学习论文汇总
AI科技评论
4+阅读 · 2018年1月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员