干货 | 深度学习论文汇总

2018 年 1 月 1 日 AI科技评论 罗浩

AI 科技评论按:本文作者罗浩,AI 科技评论授权转载。

本文用于记录自己平时收集的一些不错的往年(截止至 2017 / 12 / 29)深度学习论文,近9成的文章都是引用量3位数以上的论文,剩下少部分来自个人喜好,将伴随着我的研究生涯长期更新。

深度学习书籍和入门资源

  • LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444(深度学习最权威的综述)

  • Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Deep learning. An MIT Press book. (2015)(深度学习经典书籍)

  • Deep Learning Tutorial(李宏毅的深度学习综述PPT,适合入门)

  • D L. LISA Lab[J]. University of Montreal, 2014.(Theano配套的深度学习教程)

  • deeplearningbook-chinese(深度学习中文书,大家一起翻译的)

*在 AI 科技评论公众号回复“ 元旦资源 ”获取李宏毅深度学习综述PPT / Theano配套的深度学习教程 / 深度学习中文书。

早期的深度学习

  • Hecht-Nielsen R. Theory of the backpropagation neural network[J]. Neural Networks, 1988, 1(Supplement-1): 445-448.(BP神经网络)

  • Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets.[J]. Neural Computation, 2006, 18(7):1527-1554.(深度学习的开端DBN)

  • Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks.[J]. Science, 2006, 313(5786):504-7.(自编码器降维)

  • Ng A. Sparse autoencoder[J]. CS294A Lecture notes, 2011, 72(2011): 1-19.(稀疏自编码器)

  • Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.(堆叠自编码器,SAE)

深度学习的爆发:ImageNet挑战赛

  • Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. 2012.(AlexNet)

  • Simonyan, Karen, and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).(VGGNet)

  • Szegedy, Christian, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. (GoogLeNet)

  • Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[J]. Computer Science, 2015:2818-2826.(InceptionV3)

  • He, Kaiming, et al. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015).(ResNet)

  • Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[J]. arXiv preprint arXiv:1610.02357, 2016.(Xception)

  • Huang G, Liu Z, Weinberger K Q, et al. Densely Connected Convolutional Networks[J]. 2016. (DenseNet, 2017 CVPR best paper)

  • Squeeze-and-Excitation Networks. (SeNet, 2017 ImageNet 冠军)

  • Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[J]. arXiv preprint arXiv:1707.01083, 2017.(Shufflenet)

  • Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems. 2017: 3859-3869.(Hinton, capsules)

炼丹技巧

  • Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.(Dropout)

  • Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.(Batch Normalization)

  • Lin M, Chen Q, Yan S. Network In Network[J]. Computer Science, 2014.(Global average pooling的灵感来源)

  • Goyal, Priya, Dollár, Piotr, Girshick, Ross, et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour[J]. 2017. (Facebook实验室的成果,解决了工程上网络batchsize特大时性能下降的问题)

递归神经网络

  • Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language model[C]//Interspeech. 2010, 2: 3.(RNN和语language model结合较经典文章)

  • Kamijo K, Tanigawa T. Stock price pattern recognition-a recurrent neural network approach[C]//Neural Networks, 1990., 1990 IJCNN International Joint Conference on. IEEE, 1990: 215-221.(RNN预测股价)

  • Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.(LSTM的数学原理)

  • Sak H, Senior A W, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]//Interspeech. 2014: 338-342.(LSTM进行语音识别)

  • Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.(GRU网络)

  • Ling W, Luís T, Marujo L, et al. Finding function in form: Compositional character models for open vocabulary word representation[J]. arXiv preprint arXiv:1508.02096, 2015.(LSTM在词向量中的应用)

  • Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015.(Bi-LSTM在序列标注中的应用)

注意力模型

  • Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.(Attention model的提出)

  • Mnih V, Heess N, Graves A. Recurrent models of visual attention[C]//Advances in neural information processing systems. 2014: 2204-2212.(Attention model和视觉结合)

  • Xu K, Ba J, Kiros R, et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[C]//ICML. 2015, 14: 77-81.(Attention model用于image caption的经典文章)

  • Lee C Y, Osindero S. Recursive Recurrent Nets with Attention Modeling for OCR in the Wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2231-2239.(Attention model 用于OCR)

  • Gregor K, Danihelka I, Graves A, et al. DRAW: A recurrent neural network for image generation[J]. arXiv preprint arXiv:1502.04623, 2015.(DRAM,结合Attention model的图像生成)

生成对抗网络

  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.(GAN的提出,挖坑鼻祖)

  • Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.(CGAN)

  • Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.(DCGAN)

  • Denton E L, Chintala S, Fergus R. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[C]//Advances in neural information processing systems. 2015: 1486-1494.(LAPGAN)

  • Chen X, Duan Y, Houthooft R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in Neural Information Processing Systems. 2016: 2172-2180.(InfoGAN)

  • Arjovsky M, Chintala S, Bottou L. Wasserstein gan[J]. arXiv preprint arXiv:1701.07875, 2017.(WGAN)

  • Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[J]. arXiv preprint arXiv:1703.10593, 2017.(CycleGAN)

  • Yi Z, Zhang H, Gong P T. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation[J]. arXiv preprint arXiv:1704.02510, 2017.(DualGAN)

  • Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[J]. arXiv preprint arXiv:1611.07004, 2016.(pix2pix)

目标检测

  • Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection[C]//Advances in Neural Information Processing Systems. 2013: 2553-2561.(深度学习早期的物体检测)

  • Girshick, Ross, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.(RCNN)

  • He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//European Conference on Computer Vision. Springer International Publishing, 2014: 346-361.(何恺明大神的SPPNet)

  • Girshick R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.(速度更快的Fast R-cnn)

  • Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.(速度更更快的Faster r-cnn)

  • Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.(实时目标检测YOLO)

  • Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. Springer International Publishing, 2016: 21-37.(SSD)

  • Li Y, He K, Sun J. R-fcn: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems. 2016: 379-387.(R-fcn)

  • Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. arXiv preprint arXiv:1708.02002, 2017.(Focal loss)

One/Zero shot learning

  • Fei-Fei L, Fergus R, Perona P. One-shot learning of object categories[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(4): 594-611.(One shot learning)

  • Larochelle H, Erhan D, Bengio Y. Zero-data learning of new tasks[J]. 2008:646-651.(Zero shot learning的提出)

  • Palatucci M, Pomerleau D, Hinton G E, et al. Zero-shot learning with semantic output codes[C]//Advances in neural information processing systems. 2009: 1410-1418.(Zero shot learning比较经典的应用)

图像分割

  • Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.(有点老但是非常经典的图像语义分割论文,CVPR2015)

  • Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. arXiv preprint arXiv:1606.00915, 2016.(DeepLab)

  • Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[J]. arXiv preprint arXiv:1612.01105, 2016.[PDF](PSPNet)

  • Yu F, Koltun V, Funkhouser T. Dilated residual networks[J]. arXiv preprint arXiv:1705.09914, 2017.

  • He K, Gkioxari G, Dollár P, et al. Mask R-CNN[J]. arXiv preprint arXiv:1703.06870, 2017.[PDF](何恺明大神的MASK r-cnn,膜)

  • Hu R, Dollár P, He K, et al. Learning to Segment Every Thing[J]. arXiv preprint arXiv:1711.10370, 2017.(Mask Rcnn增强版) 

Person Re-ID

  • Yi D, Lei Z, Liao S, et al. Deep metric learning for person re-identification[C]//Pattern Recognition (ICPR), 2014 22nd International Conference on. IEEE, 2014: 34-39.(较早的一篇基于CNN的度量学习的Re-ID,现在来看网络已经很简单了)

  • Ding S, Lin L, Wang G, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993-3003.(triplet loss)

  • Cheng D, Gong Y, Zhou S, et al. Person re-identification by multi-channel parts-based cnn with improved triplet loss function[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1335-1344.(improved triplet loss)

  • Hermans A, Beyer L, Leibe B. In Defense of the Triplet Loss for Person Re-Identification[J]. arXiv preprint arXiv:1703.07737, 2017.(Triplet loss with hard mining sample)

  • Chen W, Chen X, Zhang J, et al. Beyond triplet loss: a deep quadruplet network for person re-identification[J]. arXiv preprint arXiv:1704.01719, 2017.(四元组)

  • Zheng Z, Zheng L, Yang Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro[J]. arXiv preprint arXiv:1701.07717, 2017. (用GAN造图做ReID第一篇)

  • Zhang X, Luo H, Fan X, et al. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification[J]. arXiv preprint arXiv:1711.08184, 2017. (AlignedReid,首次超越人类)

  • Liang Zheng的个人主页(在这个领域提供了大量论文,常用的数据集和代码都可以在主页中找到)

(完)

————— 新人福利 —————

关注AI 科技评论,回复 1 获取

【数百 G 神经网络 / AI / 大数据资源,教程,论文】


—————  AI 科技评论招人了  —————

AI 科技评论期待你的加入,和我们一起见证未来!

现诚招学术编辑、学术兼职、学术外翻

详情请点击招聘启事


—————  给爱学习的你的福利  —————

上海交通大学博士讲师团队

从算法到实战应用,涵盖CV领域主要知识点;

手把手项目演示

全程提供代码

深度剖析CV研究体系

轻松实战深度学习应用领域!

详细了解请点击阅读原文

————————————————————

登录查看更多
4

相关内容

arXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学与生物学的论文预印本的网站,始于1991年8月14日。截至2008年10月,arXiv.org已收集超过50万篇预印本;至2014年底,藏量达到1百万篇。在2014年时,约以每月8000篇的速度增加。
还在修改博士论文?这份《博士论文写作技巧》为你指南
专知会员服务
60+阅读 · 2020年3月19日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
270+阅读 · 2020年1月1日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
深度学习视频中多目标跟踪:论文综述
专知会员服务
92+阅读 · 2019年10月13日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
【干货】史上最全的PyTorch学习资源汇总
深度学习与NLP
24+阅读 · 2019年5月18日
多目标跟踪 近年论文及开源代码汇总
极市平台
20+阅读 · 2019年5月12日
图像分类论文与代码大列表
专知
6+阅读 · 2019年2月16日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
126篇殿堂级深度学习论文分类整理,从入门到应用
全球人工智能
5+阅读 · 2017年12月27日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
3+阅读 · 2018年8月17日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
还在修改博士论文?这份《博士论文写作技巧》为你指南
专知会员服务
60+阅读 · 2020年3月19日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
270+阅读 · 2020年1月1日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
深度学习视频中多目标跟踪:论文综述
专知会员服务
92+阅读 · 2019年10月13日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
【干货】史上最全的PyTorch学习资源汇总
深度学习与NLP
24+阅读 · 2019年5月18日
多目标跟踪 近年论文及开源代码汇总
极市平台
20+阅读 · 2019年5月12日
图像分类论文与代码大列表
专知
6+阅读 · 2019年2月16日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
126篇殿堂级深度学习论文分类整理,从入门到应用
全球人工智能
5+阅读 · 2017年12月27日
相关论文
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
3+阅读 · 2018年8月17日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员