AI 科技评论按:本文作者罗浩,AI 科技评论授权转载。
本文用于记录自己平时收集的一些不错的往年(截止至 2017 / 12 / 29)深度学习论文,近9成的文章都是引用量3位数以上的论文,剩下少部分来自个人喜好,将伴随着我的研究生涯长期更新。
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444(深度学习最权威的综述)
Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. Deep learning. An MIT Press book. (2015)(深度学习经典书籍)
Deep Learning Tutorial(李宏毅的深度学习综述PPT,适合入门)
D L. LISA Lab[J]. University of Montreal, 2014.(Theano配套的深度学习教程)
deeplearningbook-chinese(深度学习中文书,大家一起翻译的)
*在 AI 科技评论公众号回复“ 元旦资源 ”获取李宏毅深度学习综述PPT / Theano配套的深度学习教程 / 深度学习中文书。
Hecht-Nielsen R. Theory of the backpropagation neural network[J]. Neural Networks, 1988, 1(Supplement-1): 445-448.(BP神经网络)
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets.[J]. Neural Computation, 2006, 18(7):1527-1554.(深度学习的开端DBN)
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks.[J]. Science, 2006, 313(5786):504-7.(自编码器降维)
Ng A. Sparse autoencoder[J]. CS294A Lecture notes, 2011, 72(2011): 1-19.(稀疏自编码器)
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.(堆叠自编码器,SAE)
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. 2012.(AlexNet)
Simonyan, Karen, and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).(VGGNet)
Szegedy, Christian, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. (GoogLeNet)
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[J]. Computer Science, 2015:2818-2826.(InceptionV3)
He, Kaiming, et al. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015).(ResNet)
Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[J]. arXiv preprint arXiv:1610.02357, 2016.(Xception)
Huang G, Liu Z, Weinberger K Q, et al. Densely Connected Convolutional Networks[J]. 2016. (DenseNet, 2017 CVPR best paper)
Squeeze-and-Excitation Networks. (SeNet, 2017 ImageNet 冠军)
Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[J]. arXiv preprint arXiv:1707.01083, 2017.(Shufflenet)
Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems. 2017: 3859-3869.(Hinton, capsules)
Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.(Dropout)
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.(Batch Normalization)
Lin M, Chen Q, Yan S. Network In Network[J]. Computer Science, 2014.(Global average pooling的灵感来源)
Goyal, Priya, Dollár, Piotr, Girshick, Ross, et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour[J]. 2017. (Facebook实验室的成果,解决了工程上网络batchsize特大时性能下降的问题)
Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language model[C]//Interspeech. 2010, 2: 3.(RNN和语language model结合较经典文章)
Kamijo K, Tanigawa T. Stock price pattern recognition-a recurrent neural network approach[C]//Neural Networks, 1990., 1990 IJCNN International Joint Conference on. IEEE, 1990: 215-221.(RNN预测股价)
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.(LSTM的数学原理)
Sak H, Senior A W, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]//Interspeech. 2014: 338-342.(LSTM进行语音识别)
Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.(GRU网络)
Ling W, Luís T, Marujo L, et al. Finding function in form: Compositional character models for open vocabulary word representation[J]. arXiv preprint arXiv:1508.02096, 2015.(LSTM在词向量中的应用)
Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015.(Bi-LSTM在序列标注中的应用)
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.(Attention model的提出)
Mnih V, Heess N, Graves A. Recurrent models of visual attention[C]//Advances in neural information processing systems. 2014: 2204-2212.(Attention model和视觉结合)
Xu K, Ba J, Kiros R, et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[C]//ICML. 2015, 14: 77-81.(Attention model用于image caption的经典文章)
Lee C Y, Osindero S. Recursive Recurrent Nets with Attention Modeling for OCR in the Wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2231-2239.(Attention model 用于OCR)
Gregor K, Danihelka I, Graves A, et al. DRAW: A recurrent neural network for image generation[J]. arXiv preprint arXiv:1502.04623, 2015.(DRAM,结合Attention model的图像生成)
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.(GAN的提出,挖坑鼻祖)
Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.(CGAN)
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.(DCGAN)
Denton E L, Chintala S, Fergus R. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[C]//Advances in neural information processing systems. 2015: 1486-1494.(LAPGAN)
Chen X, Duan Y, Houthooft R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in Neural Information Processing Systems. 2016: 2172-2180.(InfoGAN)
Arjovsky M, Chintala S, Bottou L. Wasserstein gan[J]. arXiv preprint arXiv:1701.07875, 2017.(WGAN)
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[J]. arXiv preprint arXiv:1703.10593, 2017.(CycleGAN)
Yi Z, Zhang H, Gong P T. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation[J]. arXiv preprint arXiv:1704.02510, 2017.(DualGAN)
Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[J]. arXiv preprint arXiv:1611.07004, 2016.(pix2pix)
Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection[C]//Advances in Neural Information Processing Systems. 2013: 2553-2561.(深度学习早期的物体检测)
Girshick, Ross, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.(RCNN)
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//European Conference on Computer Vision. Springer International Publishing, 2014: 346-361.(何恺明大神的SPPNet)
Girshick R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.(速度更快的Fast R-cnn)
Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.(速度更更快的Faster r-cnn)
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.(实时目标检测YOLO)
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision. Springer International Publishing, 2016: 21-37.(SSD)
Li Y, He K, Sun J. R-fcn: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems. 2016: 379-387.(R-fcn)
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. arXiv preprint arXiv:1708.02002, 2017.(Focal loss)
Fei-Fei L, Fergus R, Perona P. One-shot learning of object categories[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(4): 594-611.(One shot learning)
Larochelle H, Erhan D, Bengio Y. Zero-data learning of new tasks[J]. 2008:646-651.(Zero shot learning的提出)
Palatucci M, Pomerleau D, Hinton G E, et al. Zero-shot learning with semantic output codes[C]//Advances in neural information processing systems. 2009: 1410-1418.(Zero shot learning比较经典的应用)
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.(有点老但是非常经典的图像语义分割论文,CVPR2015)
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. arXiv preprint arXiv:1606.00915, 2016.(DeepLab)
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[J]. arXiv preprint arXiv:1612.01105, 2016.[PDF](PSPNet)
Yu F, Koltun V, Funkhouser T. Dilated residual networks[J]. arXiv preprint arXiv:1705.09914, 2017.
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[J]. arXiv preprint arXiv:1703.06870, 2017.[PDF](何恺明大神的MASK r-cnn,膜)
Hu R, Dollár P, He K, et al. Learning to Segment Every Thing[J]. arXiv preprint arXiv:1711.10370, 2017.(Mask Rcnn增强版)
Yi D, Lei Z, Liao S, et al. Deep metric learning for person re-identification[C]//Pattern Recognition (ICPR), 2014 22nd International Conference on. IEEE, 2014: 34-39.(较早的一篇基于CNN的度量学习的Re-ID,现在来看网络已经很简单了)
Ding S, Lin L, Wang G, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993-3003.(triplet loss)
Cheng D, Gong Y, Zhou S, et al. Person re-identification by multi-channel parts-based cnn with improved triplet loss function[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1335-1344.(improved triplet loss)
Hermans A, Beyer L, Leibe B. In Defense of the Triplet Loss for Person Re-Identification[J]. arXiv preprint arXiv:1703.07737, 2017.(Triplet loss with hard mining sample)
Chen W, Chen X, Zhang J, et al. Beyond triplet loss: a deep quadruplet network for person re-identification[J]. arXiv preprint arXiv:1704.01719, 2017.(四元组)
Zheng Z, Zheng L, Yang Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro[J]. arXiv preprint arXiv:1701.07717, 2017. (用GAN造图做ReID第一篇)
Zhang X, Luo H, Fan X, et al. AlignedReID: Surpassing Human-Level Performance in Person Re-Identification[J]. arXiv preprint arXiv:1711.08184, 2017. (AlignedReid,首次超越人类)
Liang Zheng的个人主页(在这个领域提供了大量论文,常用的数据集和代码都可以在主页中找到)
(完)
————— 新人福利 —————
关注AI 科技评论,回复 1 获取
【数百 G 神经网络 / AI / 大数据资源,教程,论文】
————— AI 科技评论招人了 —————
AI 科技评论期待你的加入,和我们一起见证未来!
现诚招学术编辑、学术兼职、学术外翻
详情请点击招聘启事
————— 给爱学习的你的福利 —————
上海交通大学博士讲师团队
从算法到实战应用,涵盖CV领域主要知识点;
手把手项目演示
全程提供代码
深度剖析CV研究体系
轻松实战深度学习应用领域!
详细了解请点击阅读原文
▼▼▼
————————————————————