Weakly supervised segmentation is an important problem in medical image analysis due to the high cost of pixelwise annotation. Prior methods, while often focusing on weak labels of 2D images, exploit few structural cues of volumetric medical images. To address this, we propose a novel weakly-supervised segmentation strategy capable of better capturing 3D shape prior in both model prediction and learning. Our main idea is to extract a self-taught shape representation by leveraging weak labels, and then integrate this representation into segmentation prediction for shape refinement. To this end, we design a deep network consisting of a segmentation module and a shape denoising module, which are trained by an iterative learning strategy. Moreover, we introduce a weak annotation scheme with a hybrid label design for volumetric images, which improves model learning without increasing the overall annotation cost. The empirical experiments show that our approach outperforms existing SOTA strategies on three organ segmentation benchmarks with distinctive shape properties. Notably, we can achieve strong performance with even 10\% labeled slices, which is significantly superior to other methods.
翻译:在医学图象分析中,由于像素笔记的高昂成本,受微弱监督的分解是一个重要问题。 先前的方法,虽然往往侧重于2D图象的薄弱标签,但往往利用了少量体积图象的结构性线索。 为了解决这个问题,我们提出了一个新颖的、受微弱监督的分解战略,能够在模型预测和学习之前更好地捕捉 3D 形状。 我们的主要想法是利用微弱标签来提取自学形状代表,然后将这种表示纳入形状精细化的分解预测。 为此,我们设计了一个深层次的网络,由分解模块和形状分解模块组成,通过迭代学习战略加以培训。 此外,我们引入了一个微弱的说明计划,配有体积图象的混合标签设计,在不增加总体注解成本的情况下改进了模型学习。 实验实验表明,我们的方法在三个有独特形状的器官分解基准上优于现有的SOTA战略。 值得注意的是,我们可以用甚至10 ⁇ 的分解分解模式取得很强的成绩,这比其他方法要好得多。