A successful model for high-dimensional spatial extremes should, in principle, be able to describe both weakening extremal dependence at increasing levels and changes in the type of extremal dependence class as a function of the distance between locations. Furthermore, the model should allow for computationally tractable inference using inference methods that efficiently extract information from data and that are robust to model misspecification. In this paper, we demonstrate how to fulfil all these requirements by developing a comprehensive methodological workflow for efficient Bayesian modelling of high-dimensional spatial extremes using the spatial conditional extremes model while performing fast inference with R-INLA. We then propose a post hoc adjustment method that results in more robust inference by properly accounting for possible model misspecification. The developed methodology is applied for modelling extreme hourly precipitation from high-resolution radar data in Norway. Inference is computationally efficient, and the resulting model fit successfully captures the main trends in the extremal dependence structure of the data. Robustifying the model fit by adjusting for possible misspecification further improves model performance.
翻译:高维空间极端的成功模型原则上应当能够描述不同地点之间距离的函数,既能描述在不断增加的水平上削弱极端依赖性,又能描述极端依赖性类别类型的变化;此外,该模型应允许使用有效从数据中提取信息的推论方法进行可计算可移动的推论,这些推理方法对数据进行高效提取,并且能够模拟误差。在本文件中,我们展示了如何满足所有这些要求的方法,即利用空间条件极端模型开发高效的巴伊西亚空间高度空间极端模型,同时对R-INLA进行快速推断。然后,我们提出了一个后期调整方法,通过适当计算可能的模型的误差性能,得出更强有力的推论。所开发的方法用于从挪威高分辨率雷达数据中模拟极端小时降水的情况。推论是高效的,由此产生的模型能够成功地捕捉数据极端依赖性结构中的主要趋势。通过调整可能的误差性能进一步改进模型,使该模型更加适合。