项目名称: 存储器用外延铁电薄膜的挠曲电效应研究

项目编号: No.11202054

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 蒋艳平

作者单位: 广东工业大学

项目金额: 26万元

中文摘要: 铁电薄膜存储器具有节能、非挥发、高速、高密度、低功耗、抗辐射和与CMOS工艺兼容等优点,被公认为下一代最具潜力的存储器之一。铁电薄膜因其在铁电随机存储器方面的潜在应用而受到广泛关注。铁电薄膜存储器微型化、集成化发展趋势迫切需要制备性能优异、厚度很薄的外延铁电薄膜。而外延铁电薄膜中的应变梯度将在很大程度上影响薄膜的性能,故挠曲电效应在外延铁电薄膜中不容忽视。基于此,本项目以存储器用SBT外延铁电薄膜为研究对象,从实验和理论两个方面对外延铁电薄膜中的挠曲电效应进行研究。通过外延薄膜中应变分布的表征分析,观察铁电畴在不同应变梯度下的演化行为,表征外延铁电薄膜的电学性能,结合理论相场模拟电畴的演化行为,建立挠曲电效应的铁电薄膜力-电耦合关系,分析挠曲电效应的物理机制,得到应变梯度对铁电薄膜电学性能的调控规律,进一步优化实验参数,为优化铁电薄膜及存储器的性能提供理论和技术指导。

中文关键词: 陶瓷;薄膜;应变;电性能;相场模拟

英文摘要: Ferroelectric random access memories (FeRAMs) is currently regarded as candidates of the most potential next generation memories with clear advantages such as non-volatility, low power consumption, high endurance, high speed writing, high density, irradiation hardening and compatible with integrated circuit (IC) process. Ferroelectric thin films have attracted a great deal of attention for the potential applications in FeRAM. To obtain high properties and thin epitaxial films is very important to satisfy the micromation and integration development of FeRAM. The flexoelectric effect can't be neglected in epitaxial films since strain gradient can affect the properties of the thin films to a great extent. Based on the above consideration, this item will focus on the flexoelectricity effect in epitaxial ferroelectric films though experimental investigation and theoretical simulation. Experimentally, the strain gradient in epitaxial thin films will be characterized and analyzed , the evolvement behavior of ferroelectric domain in different strain gradient will be observed and the electrical properties of epitaxial thin films will be investigated. Theoretically, the electromechanical coupling equation including flexoelectricity effect will be established and the domain switching will be simulated by phase field method

英文关键词: Ceramics;films;strain;electrical properties;Phase field simulation

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
53+阅读 · 2021年6月30日
专知会员服务
38+阅读 · 2021年6月11日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Chrome vs Firefox 性能之争,到底哪家强?
CSDN
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
53+阅读 · 2021年6月30日
专知会员服务
38+阅读 · 2021年6月11日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
相关资讯
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Chrome vs Firefox 性能之争,到底哪家强?
CSDN
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员