World-building, the process of developing both the narrative and physical world of a game, plays a vital role in the game's experience. Critically acclaimed independent and AAA video games are praised for strong world building, with game maps that masterfully intertwine with and elevate the narrative, captivating players and leaving a lasting impression. However, designing game maps that support a desired narrative is challenging, as it requires satisfying complex constraints from various considerations. Most existing map generation methods focus on considerations about gameplay mechanics or map topography, while the need to support the story is typically neglected. As a result, extensive manual adjustment is still required to design a game world that facilitates particular stories. In this work, we approach this problem by introducing an extra layer of plot facility layout design that is independent of the underlying map generation method in a world-building pipeline. Concretely, we present a system that leverages Reinforcement Learning (RL) to automatically assign concrete locations on a game map to abstract locations mentioned in a given story (plot facilities), following spatial constraints derived from the story. A decision-making agent moves the plot facilities around, considering their relationship to the map and each other, to locations on the map that best satisfy the constraints of the story. Our system considers input from multiple modalities: map images as pixels, facility locations as real values, and story constraints expressed in natural language. We develop a method of generating datasets of facility layout tasks, create an RL environment to train and evaluate RL models, and further analyze the behaviors of the agents through a group of comprehensive experiments and ablation studies, aiming to provide insights for RL-based plot facility layout design.
翻译:暂无翻译