Standard maximum likelihood or Bayesian approaches to parameter estimation for stochastic differential equations are not robust to perturbations in the continuous-in-time data. In this paper, we give a rather elementary explanation of this observation in the context of continuous-time parameter estimation using an ensemble Kalman filter. We employ the frequentist perspective to shed new light on three robust estimation techniques; namely subsampling the data, rough path corrections, and data filtering. We illustrate our findings through a simple numerical experiment.
翻译:标准最大可能性或贝叶斯法(Bayesian ) 用于随机差分方程参数估算的方法对于在连续时间数据中的扰动作用不强。 在本文中,我们用一个共同的 Kalman 过滤器在连续时间参数估算中对这一观察作了相当简单的解释。 我们从常客角度出发,为三种稳健的估算技术,即对数据、粗路校正和数据过滤进行子取样。 我们通过简单的数字实验来说明我们的结论。