Cycle consistency is widely used for face editing. However, we observe that the generator tends to find a tricky way to hide information from the original image to satisfy the constraint of cycle consistency, making it impossible to maintain the rich details (e.g., wrinkles and moles) of non-editing areas. In this work, we propose a simple yet effective method named HifaFace to address the above-mentioned problem from two perspectives. First, we relieve the pressure of the generator to synthesize rich details by directly feeding the high-frequency information of the input image into the end of the generator. Second, we adopt an additional discriminator to encourage the generator to synthesize rich details. Specifically, we apply wavelet transformation to transform the image into multi-frequency domains, among which the high-frequency parts can be used to recover the rich details. We also notice that a fine-grained and wider-range control for the attribute is of great importance for face editing. To achieve this goal, we propose a novel attribute regression loss. Powered by the proposed framework, we achieve high-fidelity and arbitrary face editing, outperforming other state-of-the-art approaches.
翻译:循环一致性被广泛用于面部编辑。 然而,我们观察到,生成器往往会找到一种棘手的方法,将信息隐藏在原始图像中,以满足周期一致性的制约,从而无法保持非编辑区的详细细节(如皱纹和摩尔等)。在这项工作中,我们提出了一个简单而有效的方法,名为Hifaface,从两个角度解决上述问题。首先,我们通过将输入图像的高频信息直接输入生成器的结尾,减轻生成器对合成丰富细节的压力。第二,我们采用了另一个歧视器,鼓励生成器合成丰富细节。具体地说,我们应用波盘转换将图像转换为多频域,其中高频部分可用于恢复丰富细节。我们还注意到,对属性的精细和广范围的控制对于面部编辑非常重要。为了实现这一目标,我们提议了一个新的属性回归损失。根据拟议框架,我们实现了高纤维和任意面部编辑,超越了其他艺术状态的方法。