We revisit classic string problems considered in the area of parameterized complexity, and study them through the lens of dynamic data structures. That is, instead of asking for a static algorithm that solves the given instance efficiently, our goal is to design a data structure that efficiently maintains a solution, or reports a lack thereof, upon updates in the instance. We first consider the Closest String problem, for which we design randomized dynamic data structures with amortized update times $d^{\mathcal{O}(d)}$ and $|\Sigma|^{\mathcal{O}(d)}$, respectively, where $\Sigma$ is the alphabet and $d$ is the assumed bound on the maximum distance. These are obtained by combining known static approaches to Closest String with color-coding. Next, we note that from a result of Frandsen et al.~[J. ACM'97] one can easily infer a meta-theorem that provides dynamic data structures for parameterized string problems with worst-case update time of the form $\mathcal{O}(\log \log n)$, where $k$ is the parameter in question and $n$ is the length of the string. We showcase the utility of this meta-theorem by giving such data structures for problems Disjoint Factors and Edit Distance. We also give explicit data structures for these problems, with worst-case update times $\mathcal{O}(k2^{k}\log \log n)$ and $\mathcal{O}(k^2\log \log n)$, respectively. Finally, we discuss how a lower bound methodology introduced by Amarilli et al.~[ICALP'21] can be used to show that obtaining update time $\mathcal{O}(f(k))$ for Disjoint Factors and Edit Distance is unlikely already for a constant value of the parameter $k$.
翻译:我们重新审视参数化复杂度领域所考虑的经典字符串问题, 并通过动态数据结构的镜头来研究这些问题。 也就是说, 我们的目标不是要求一个能高效解决给定实例的静态算法, 而是设计一个能有效维护解决方案的数据结构, 或者在进行更新时报告其缺乏。 我们首先考虑“ 关闭字符串” 问题, 我们为此设计一个随机化的动态数据结构, 配有摊销更新次数$d ⁇ mathcal{O} (d) $ 和 $ ⁇ Sigma{ macal{{O} (d) 美元, 其中, $\Sigma$是字母和 $Odddal_ 假设最大更新时的参数 。 以 $_ mal_ 美元 和 美元 美元元元元元元元xxxxxxxxxxxxxxxx