We investigate the complexity of solving stable or perturbation-resilient instances of k-Means and k-Median clustering in fixed dimension Euclidean metrics (or more generally doubling metrics). The notion of stable or perturbation resilient instances was introduced by Bilu and Linial [2010] and Awasthi et al. [2012]. In our context we say a k-Means instance is \alpha-stable if there is a unique OPT solution which remains unchanged if distances are (non-uniformly) stretched by a factor of at most \alpha. Stable clustering instances have been studied to explain why heuristics such as Lloyd's algorithm perform well in practice. In this work we show that for any fixed \epsilon>0, (1+\epsilon)-stable instances of k-Means in doubling metrics can be solved in polynomial time. More precisely we show a natural multiswap local search algorithm in fact finds the OPT solution for (1+\epsilon)-stable instances of k-Means and k-Median in a polynomial number of iterations. We complement this result by showing that under a plausible PCP hypothesis this is essentially tight: that when the dimension d is part of the input, there is a fixed \epsilon_0>0 s.t. there is not even a PTAS for (1+\epsilon_0)-stable k-Means in R^d unless NP=RP. To do this, we consider a robust property of CSPs; call an instance stable if there is a unique optimum solution x^* and for any other solution x', the number of unsatisfied clauses is proportional to the Hamming distance between x^* and x'. Dinur et al. have already shown stable QSAT is hard to approximate for some constant Q, our hypothesis is simply that stable QSAT with bounded variable occurrence is also hard. Given this hypothesis, we consider "stability-preserving" reductions to prove our hardness for stable k-Means. Such reductions seem to be more fragile than standard L-reductions and may be of further use to demonstrate other stable optimization problems are hard.


翻译:我们调查了解决 k- Means 和 k- Median 的稳定性或扰动再恢复情况的复杂性。 我们调查了 k- Means 和 k- Median 的稳定性或扰动性组合在固定维度 Luclide 度( 或更普遍的翻倍度 ) 的参数中的复杂性。 Bilu 和 Linial [2010] 和 Awasthi 等人 [2012] 引入了稳定或扰动性强度实例的概念。 在我们的背景中, k- Means 实例中如果存在一种特殊的地平差( 非一致的), 则该地平地平面会保持不变。 更确切地说, 当距离( 异常的) kMeans 和 kMediarial 算法在实际操作中表现良好时, 该地平面平面的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平滑。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员