Computing-in-memory (CiM) is a promising technique to achieve high energy efficiency in data-intensive matrix-vector multiplication (MVM) by relieving the memory bottleneck. Unfortunately, due to the limited SRAM capacity, existing SRAM-based CiM needs to reload the weights from DRAM in large-scale networks. This undesired fact weakens the energy efficiency significantly. This work, for the first time, proposes the concept, design, and optimization of computing-in-ROM to achieve much higher on-chip memory capacity, and thus less DRAM access and lower energy consumption. Furthermore, to support different computing scenarios with varying weights, a weight fine-tune technique, namely Residual Branch (ReBranch), is also proposed. ReBranch combines ROM-CiM and assisting SRAM-CiM to ahieve high versatility. YOLoC, a ReBranch-assisted ROM-CiM framework for object detection is presented and evaluated. With the same area in 28nm CMOS, YOLoC for several datasets has shown significant energy efficiency improvement by 14.8x for YOLO (Darknet-19) and 4.8x for ResNet-18, with <8% latency overhead and almost no mean average precision (mAP) loss (-0.5% ~ +0.2%), compared with the fully SRAM-based CiM.


翻译:电子计算机化( CiM) 是一个很有希望的技术, 通过缓解内存瓶颈, 在数据密集型矩阵矢量倍增( MVM) 中实现高能效, 是一个很有希望的技术。 不幸的是, 由于 SRAM 能力有限, 以 SRAM 为基础的 SRAM 现有 CIM 需要在大型网络中重新装载 DRAM 的重量。 这个不理想的事实大大削弱了能源效率。 这项工作首次提出了计算在轨存储能力的概念、 设计和优化, 从而降低 DRAM 访问量和能源消耗量。 此外, 支持不同计算情景, 以不同重量支持不同的计算情景, 还提出了一种重量微调技术, 即 残留处( Rebrach ) 。 ReBranch 将 ROM- CiM 和 协助 SRAM- CiM 到高多功能。 YOLoC 首次提出并评估了基于 ReBranch 的 ROM- CiM 框架( 完全用于目标检测, ROM- CiM 框架 ), 和 14 MOS, YOL- DOC 和 中位 ( YOL- DRVER ) 等 平均能量 改进了能源效率, 14 和 的YOL- 14% 和 和 和 等 中 等 等 中度 中度 中度 等 中 等 等 等 的能量 损耗损耗损率 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员