Self-Attention Mechanism (SAM), an important component of machine learning, has been relatively little investigated in the field of quantum machine learning. Inspired by the Variational Quantum Algorithm (VQA) framework and SAM, Quantum Self-Attention Network (QSAN) that can be implemented on a near-term quantum computer is proposed.Theoretically, Quantum Self-Attention Mechanism (QSAM), a novel interpretation of SAM with linearization and logicalization is defined, in which Quantum Logical Similarity (QLS) is presented firstly to impel a better execution of QSAM on quantum computers since inner product operations are replaced with logical operations, and then a QLS-based density matrix named Quantum Bit Self-Attention Score Matrix (QBSASM) is deduced for representing the output distribution effectively. Moreover, QSAN is implemented based on the QSAM framework and its practical quantum circuit is designed with 5 modules. Finally, QSAN is tested on a quantum computer with a small sample of data. The experimental results show that QSAN can converge faster in the quantum natural gradient descent framework and reassign weights to word vectors. The above illustrates that QSAN is able to provide attention with quantum characteristics faster, laying the foundation for Quantum Natural Language Processing (QNLP).


翻译:在量子机器学习领域,作为机器学习的重要组成部分的自我保护机制(SAM)相对而言很少得到调查,在量子机器学习领域,受量子计算机学习领域(QLS)的启发,在量子计算机学习领域(VQA)框架和SAM、Qantum自我保护网络(QSAN)的启发下,可以在近期量子计算机上实施。 从理论角度讲,量子自我保护机制(QSAM)是SAM的一种新解释,它具有线性化和逻辑化,在量子机器学习领域(QLS)首先展示量子逻辑相似性(QLS),使量子计算机更好地执行QSAM,因为内部产品操作被逻辑操作取代,而基于QAM(QSAN)的密度矩阵(QSAN)可有效代表产出分布。此外,QSAN的运用QSAM框架及其实用量子电流电路设计。最后, QSAN在量子计算机上测试量子系统质量,使量子系统质量基础,使量子序列数据更加一致。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员