项目名称: 超声能场与搅拌摩擦焊塑性流变材料的耦合作用机理

项目编号: No.51475272

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 机械、仪表工业

项目作者: 武传松

作者单位: 山东大学

项目金额: 85万元

中文摘要: 超声可降低材料的变形阻力,是一种能耗低、利用率高的辅助能量。前期研究表明,在搅拌头前方待焊工件上施加超声能场,可减少材料塑性流变所需的摩擦热量;降低焊接载荷并改善焊接质量的工艺效果明显。但超声改变摩擦搅拌区塑性变形材料行为的机制,尚未阐明。本项目拟研究搅拌摩擦焊接过程中超声能场与塑性流变材料的相互作用机理。探究超声波在搅拌头附近塑性变形材料中的传输、耦合及作用规律;构建摩擦搅拌区超声体积效应与表面效应的描述和表征方法;阐明超声能场改变材料屈服应力和流动应力的物理机制。提出超声作用下材料本构关系的修正方法,建立超声能场-应变场-流场-热场的耦合模型,定量分析和测试超声能场作用下搅拌头附近材料塑性流动行为、产热特点、温度分布特征等;实现超声参量、焊接工艺参数与接头组织性能之间的优化与匹配。为有效地指导超声能量在搅拌摩擦焊接过程中的合理应用、提升我国高强铝合金结构的焊接制造水平奠定坚实基础。

中文关键词: 搅拌摩擦焊;超声能场;塑性流变材料;耦合作用;物理机制

英文摘要: Ultrasonic energy can decrease the deformation resistance of materials, and is an assisted energy source of low power consumption and high efficiency. Preliminary studies have shown that exerting ultrasonic energy on the metal to be welded in front of the friction stir tool can lower the required friction heat of materials' plastic deformation, and there is obvious process effectiveness of lowering welding loads and improving weld quality. However, the way how ultrasonic energy changes the behavior of the plastically deformed material is still unrevealed. This project will get deep insight into the underlying interaction mechanism between the ultrasonic energy field and the plastically deformed material in FSW. The transmission, coupling and action regularities of the ultrasonic energy within the plastically deformed material in the vicinity of the tool is explored. The describing and characterizing methods of the volume effects and surface effects due to ultrasonic energy in friction stir zone are developed. The physical reasons why ultrasonic energy field changes the materials' yield stress and flow stress are elucidated. The method to modify the constitutive relation is put forward. The coupled model is established to describe the correlations of the ultrasonic field, strain field, fluid flow field and temperature field. The plastic flow behaviors, heat generation characteristics, and temperature distribution features of the material around the tool under the action of ultrasonic energy field are quantitatively analyzed and experimentally measured. The optimization and match between the ultrasonic variables, the welding process parameters and the weld joints' microstructures & properties are realized. It will lay solid foundation for effective guiding the appropriate utilization of ultrasonic energy in FSW process and raising the technological level of welding high strength aluminum alloy structures in China.

英文关键词: Friction stir welding;Ultrasonic energy field;Plastic material flow;Coupled interaction;Physical mechanisim

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
142+阅读 · 2021年8月12日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
31+阅读 · 2021年5月7日
中国数字经济就业发展研究报告2021,43页pdf
专知会员服务
70+阅读 · 2021年3月27日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
354+阅读 · 2020年2月15日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
实战|手把手教你实现图象边缘检测!
全球人工智能
10+阅读 · 2018年1月19日
工业大数据分析之道:机理与数据分析的知识融合
遇见数学
12+阅读 · 2017年11月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
14+阅读 · 2020年10月26日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
142+阅读 · 2021年8月12日
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
31+阅读 · 2021年5月7日
中国数字经济就业发展研究报告2021,43页pdf
专知会员服务
70+阅读 · 2021年3月27日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
354+阅读 · 2020年2月15日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员