The analytic inference, e.g. predictive distribution being in closed form, may be an appealing benefit for machine learning practitioners when they treat wide neural networks as Gaussian process in Bayesian setting. The realistic widths, however, are finite and cause weak deviation from the Gaussianity under which partial marginalization of random variables in a model is straightforward. On the basis of multivariate Edgeworth expansion, we propose a non-Gaussian distribution in differential form to model a finite set of outputs from a random neural network, and derive the corresponding marginal and conditional properties. Thus, we are able to derive the non-Gaussian posterior distribution in Bayesian regression task. In addition, in the bottlenecked deep neural networks, a weight space representation of deep Gaussian process, the non-Gaussianity is investigated through the marginal kernel.
翻译:分析推论,例如,预测分布为封闭形式,对于机器学习实践者来说,当他们把广泛的神经网络作为贝耶西亚环境中的高山过程来对待时,分析推论可能对机器学习实践者有吸引力。但是,现实的宽度是有限的,导致与高山的微弱偏差,在高山上,一个模型中随机变量的部分边缘化是简单易行的。在多变的埃杰沃斯扩展的基础上,我们提议以不同形式采用非加西语的分布法,以模拟随机神经网络的有限输出,并得出相应的边际和有条件特性。因此,我们能够在巴耶西亚回归任务中得出非加西语的后方分布。此外,在高斯河边深层网络中,非加西语过程的重量空间代表是通过边缘内核研究的。</s>