Communication and computation are often viewed as separate tasks. This approach is very effective from the perspective of engineering as isolated optimizations can be performed. On the other hand, there are many cases where the main interest is a function of the local information at the devices instead of the local information itself. For such scenarios, information theoretical results show that harnessing the interference in a multiple-access channel for computation, i.e., over-the-air computation (OAC), can provide a significantly higher achievable computation rate than the one with the separation of communication and computation tasks. Besides, the gap between OAC and separation in terms of computation rate increases with more participating nodes. Given this motivation, in this study, we provide a comprehensive survey on practical OAC methods. After outlining fundamentals related to OAC, we discuss the available OAC schemes with their pros and cons. We provide an overview of the enabling mechanisms for achieving reliable computation in the wireless channel. Finally, we summarize the potential applications of OAC and point out some future directions.
翻译:通信和计算往往被视为单独的任务。从工程的角度来看,这一方法非常有效,因为可以进行孤立的优化。另一方面,在许多情况下,主要利益是设备上当地信息而不是当地信息本身的功能。对于这种情况,信息理论结果表明,利用多进入计算渠道的干扰,即超空计算(OAC),可以提供比分通信和计算任务大得多的可实现的计算率。此外,OAC与计算率分离之间的差距随着更多的参与而增加。鉴于这一动机,我们在本研究中就实际的OAC方法进行一项全面调查。在概述与OAC有关的基本因素之后,我们用其利弊来讨论现有的OAC计划。我们概述了在无线频道实现可靠计算的各种扶持机制。最后,我们总结OAC的潜在应用,指出一些未来的方向。