We study an anisotropic modified Crouzeix--Raviart finite element method to the rotational form of the stationary incompressible Navier--Stokes equation with large irrotational body forces. We present an anisotropic $H^1$ error estimate for the velocity of a modified Crouzeix--Raviart finite element method for the Navier--Stokes equation. The modified Crouzeix--Raviart finite element scheme was obtained using a lifting operator that maps the velocity test functions to $H(\div;\Omega)$-conforming finite element spaces. Because no shape-regularity mesh conditions are imposed, anisotropic meshes can be used for analysis. The core idea of the proof involves using the relation between the Raviart--Thomas and Crouzeix--Raviart finite element spaces. Furthermore, we present a discrete Sobolev inequality under a semi-regular mesh condition to estimate the stability of the proposed method and confirm the obtained results through numerical experiments.


翻译:本文研究了一种应用于可旋转大型无旋力体质力场的稳定不可压缩Navier-Stokes方程的各向异性修改的Crouzeix-Raviart有限元方法。我们提出了一个各向异性的$H^1$误差估计方法以评估Raviart-Thomas和Crouzeix-Raviart有限元方法空间之间的关系。修改的Crouzeix-Raviart有限元方案使用提升算子将速度测试函数映射到$H(\div;\Omega)$- 协调的有限元空间。由于不需要形状规则网格条件,因此可使用各向异性网格进行分析。证明的核心思想在于使用Raviart-Thomas和Crouzeix-Raviart有限元空间之间的关系。此外,我们基于半规则网格条件提出了离散Sobolev不等式,以评估所提方法的稳定性,并通过数值实验确证所得结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
代码解读 | VINS_Mono中的鱼眼相机模型
计算机视觉life
16+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Seq2seq强化,Pointer Network简介
机器学习算法与Python学习
15+阅读 · 2018年12月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
代码解读 | VINS_Mono中的鱼眼相机模型
计算机视觉life
16+阅读 · 2019年9月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Seq2seq强化,Pointer Network简介
机器学习算法与Python学习
15+阅读 · 2018年12月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员