Mutually unbiased bases (MUBs) are highly symmetric bases on complex Hilbert spaces, and the corresponding rank-1 projective measurements are ubiquitous in quantum information theory. In this work, we study a recently introduced generalization of MUBs called mutually unbiased measurements (MUMs). These measurements inherit the essential property of complementarity from MUBs, but the Hilbert space dimension is no longer required to match the number of outcomes. This operational complementarity property renders MUMs highly useful for device-independent quantum information processing. It has been shown that MUMs are strictly more general than MUBs. In this work we provide a complete proof of the characterization of MUMs that are direct sums of MUBs. We then proceed to construct new examples of MUMs that are not direct sums of MUBs. A crucial technical tool for these construction is a correspondence with quaternionic Hadamard matrices, which allows us to map known examples of such matrices to MUMs that are not direct sums of MUBs. Furthermore, we show that -- in stark contrast with MUBs -- the number of MUMs for a fixed outcome number is unbounded. Next, we focus on the use of MUMs in quantum communication. We demonstrate how any pair of MUMs with d outcomes defines a d-dimensional superdense coding protocol. Using MUMs that are not direct sums of MUBs, we disprove a recent conjecture due to Nayak and Yuen on the rigidity of superdense coding for infinitely many dimensions.


翻译:互不偏倚的基础( MUBs) 是复杂的 Hilbert 空间空间的高度对称基础, 相应的一级投影测量在量子信息理论中是无处不在的。 在这项工作中, 我们研究最近引入的MUBs的概括性, 称为相互不偏倚的测量( MMUMs ) 。 这些测量继承了MUBs的补充性的基本属性, 但Hilbert空间层面不再需要匹配结果的数量。 这种操作互补性属性使得MUMs对设备依赖量子信息处理非常有用。 已经表明MUMss的严格性比MUBs更普遍。 在这项工作中, 我们提供了一个完整的证据, 证明MUMUs是MUs直接的总特征。 我们接下来的MUMUs的超级特征, 我们用MUs的不直径直径不直径直的MUbs的MUmalalalalalal IMs, 我们用MUs 直直径的MUMUs 数字来定义。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月15日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员