Neural Radiance Fields (NeRF) have shown impressive results in 3D reconstruction and generating novel views. A key challenge within NeRF is the editing of reconstructed scenes, such as object removal, which requires maintaining consistency across multiple views and ensuring high-quality synthesised perspectives. Previous studies have incorporated depth priors, typically from LiDAR or sparse depth measurements provided by COLMAP, to improve the performance of object removal in NeRF. However, these methods are either costly or time-consuming. In this paper, we propose a novel approach that integrates monocular depth estimates with NeRF-based object removal models to significantly reduce time consumption and enhance the robustness and quality of scene generation and object removal. We conducted a thorough evaluation of COLMAP's dense depth reconstruction on the KITTI dataset to verify its accuracy in depth map generation. Our findings suggest that COLMAP can serve as an effective alternative to a ground truth depth map where such information is missing or costly to obtain. Additionally, we integrated various monocular depth estimation methods into the removal NeRF model, i.e., SpinNeRF, to assess their capacity to improve object removal performance. Our experimental results highlight the potential of monocular depth estimation to substantially improve NeRF applications.
翻译:暂无翻译