Traditional Bayesian approaches for model uncertainty quantification rely on notoriously difficult processes of marginalization over each network parameter to estimate its probability density function (PDF). Our hypothesis is that internal layer outputs of a trained neural network contain all of the information related to both its mapping function (quantified by its weights) as well as the input data distribution. We therefore propose a framework for predictive uncertainty quantification of a trained neural network that explicitly estimates the PDF of its raw prediction space (before activation), p(y'|x,w), which we refer to as the model PDF, in a Gaussian reproducing kernel Hilbert space (RKHS). The Gaussian RKHS provides a localized density estimate of p(y'|x,w), which further enables us to utilize gradient based formulations of quantum physics to decompose the model PDF in terms of multiple local uncertainty moments that provide much greater resolution of the PDF than the central moments characterized by Bayesian methods. This provides the framework with a better ability to detect distributional shifts in test data away from the training data PDF learned by the model. We evaluate the framework against existing uncertainty quantification methods on benchmark datasets that have been corrupted using common perturbation techniques. The kernel framework is observed to provide model uncertainty estimates with much greater precision based on the ability to detect model prediction errors.


翻译:我们的假设是,经过训练的神经网络的内部层输出包含与其绘图功能(按重量量化)以及输入数据分布有关的所有信息。因此,我们提议了一个框架,用于预测一个经过训练的神经网络的不确定性量化,该网络明确估计其原始预测空间(在激活前)的PDF, p(y' ⁇ x,w),我们称之为模型PDF,用于估算其概率密度功能(RKHS)的模型PDF。Gausian RKHS提供了对p(y' ⁇ x,w)的局部密度估计,这进一步使我们能够利用量子物理的梯度公式,将模型PDFF分解为多个局部不确定时刻,这些时候对PDF的分辨率比Bayesian方法所描述的中心时刻要高得多。这为框架提供了一种更好的能力,以检测测试数据从模型所学的培训数据PDFF的分布变化。我们用通用的精确度估算法评估了比通用的精确度框架更精确性。我们用观察到的精确度来评估现有不确定性的精确度框架提供了更多的基准。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员