Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that aims to align aspects and corresponding sentiments for aspect-specific sentiment polarity inference. It is challenging because a sentence may contain multiple aspects or complicated (e.g., conditional, coordinating, or adversative) relations. Recently, exploiting dependency syntax information with graph neural networks has been the most popular trend. Despite its success, methods that heavily rely on the dependency tree pose challenges in accurately modeling the alignment of the aspects and their words indicative of sentiment, since the dependency tree may provide noisy signals of unrelated associations (e.g., the "conj" relation between "great" and "dreadful" in Figure 2). In this paper, to alleviate this problem, we propose a Bi-Syntax aware Graph Attention Network (BiSyn-GAT+). Specifically, BiSyn-GAT+ fully exploits the syntax information (e.g., phrase segmentation and hierarchical structure) of the constituent tree of a sentence to model the sentiment-aware context of every single aspect (called intra-context) and the sentiment relations across aspects (called inter-context) for learning. Experiments on four benchmark datasets demonstrate that BiSyn-GAT+ outperforms the state-of-the-art methods consistently.
翻译:以外观为基础的情绪分析(ABSA)是一项精细的情绪分析任务,旨在调和某些方面和相应的情绪,以得出特定情绪极极化的推论,具有挑战性,因为一个句子可能包含多个方面或复杂(例如有条件、协调或反向)关系。最近,利用图形神经网络的依赖性合成信息是最受欢迎的趋势。尽管这种方法取得了成功,但大量依赖依赖树的方法在准确模拟这些方面及其文字的调和方面表示情绪方面构成挑战,因为依赖树可能提供不相关的关联(例如图2中“大”和“易读”之间的“conj”关系)的噪音信号。为了缓解这一问题,我们在本文件中提议采用双声税认知图形关注网络(Bis-Syn-GAT+ ) 。具体地说,Bisyn-GAT+ 充分利用了语法信息(例如语系分化和等级结构结构),以模拟每个单一方面(所谓的内部)的感知性背景和AAT-T-S-S-ACT-C-S-C-C-S-Slaviolg-S-S-Slviol-S-S-Sl-Sl-S-S-S-Slvicleg-S-Sl-Sl-Sl-Sl-Sl-Sl-Sl-S-S-Sl-S-S-S-S-S-S-Slviolvial-S-Sl-S-S-S-S-S-Sl-Sl-S-S-S-S-Sl-Sl-Sl-Sl-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-