The dynamic Schr\"odinger bridge problem seeks a stochastic process that defines a transport between two target probability measures, while optimally satisfying the criteria of being closest, in terms of Kullback-Leibler divergence, to a reference process. We propose a novel sampling-based iterative algorithm, the iterated diffusion bridge mixture transport (IDBM), aimed at solving the dynamic Schr\"odinger bridge problem. The IDBM procedure exhibits the attractive property of realizing a valid coupling between the target measures at each step. We perform an initial theoretical investigation of the IDBM procedure, establishing its convergence properties. The theoretical findings are complemented by numerous numerical experiments illustrating the competitive performance of the IDBM procedure across various applications. Recent advancements in generative modeling employ the time-reversal of a diffusion process to define a generative process that approximately transports a simple distribution to the data distribution. As an alternative, we propose using the first iteration of the IDBM procedure as an approximation-free method for realizing this transport. This approach offers greater flexibility in selecting the generative process dynamics and exhibits faster training and superior sample quality over longer discretization intervals. In terms of implementation, the necessary modifications are minimally intrusive, being limited to the training loss computation, with no changes necessary for generative sampling.


翻译:动态薛定谔桥问题旨在寻找定义在两个目标概率测度之间的随机过程,同时在满足与参考过程的Kullback-Leibler散度最接近的准则的前提下进行最优化。我们提出了一种新的基于采样的迭代算法,即迭代扩散桥混合传输(IDBM),旨在解决动态薛定谔桥问题。IDBM过程具有在每个步骤中实现目标测度之间有效耦合的优点。我们对IDBM过程进行了初步的理论研究,建立了其收敛性质。理论发现得到了大量数值实验的支持,这些实验展示了IDBM过程在各种应用中的竞争性能。 最近,生成建模的最新进展采用扩散过程的时间逆来定义一个生成过程,该过程近似地将简单分布传输到数据分布。作为替代方法,我们建议使用IDBM过程的第一次迭代作为无近似方法来实现这种传输。这种方法在选择生成过程动力学方面提供了更大的灵活性,并在较长的离散化间隔上表现出更快的训练速度和更优质的样本质量。在实现方面,所需的修改是最小侵入性的,仅限于训练损失计算,在生成抽样方面不需要任何更改。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【Yoshua Bengio】生成式流网络,Generative Flow Networks
专知会员服务
32+阅读 · 2022年3月19日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
生成扩散模型漫谈:一般框架之ODE篇
PaperWeekly
1+阅读 · 2022年9月1日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关资讯
生成扩散模型漫谈:一般框架之ODE篇
PaperWeekly
1+阅读 · 2022年9月1日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员