Bin picking is a core problem in industrial environments and robotics, with its main module as 6D pose estimation. However, industrial depth sensors have a lack of accuracy when it comes to small objects. Therefore, we propose a framework for pose estimation in highly cluttered scenes with small objects, which mainly relies on RGB data and makes use of depth information only for pose refinement. In this work, we compare synthetic data generation approaches for object detection and pose estimation and introduce a pose filtering algorithm that determines the most accurate estimated poses. We will make our
翻译:Bin采摘是工业环境和机器人的一个核心问题,其主要模块为6D构成估计。然而,工业深度传感器在小型物体方面缺乏准确性。因此,我们提议了一个框架,用于在高度混乱的场景中对小型物体进行估计,这些物体主要依赖RGB数据,并且只利用深度信息进行改进。在这项工作中,我们比较了用于探测物体的合成数据生成方法,提出了估计,并采用了一种构成式过滤算法,以确定最准确的估计构成。我们将作出我们的预测。