Object detectors are vulnerable to backdoor attacks. In contrast to classifiers, detectors possess unique characteristics, architecturally and in task execution; often operating in challenging conditions, for instance, detecting traffic signs in autonomous cars. But, our knowledge dominates attacks against classifiers and tests in the "digital domain". To address this critical gap, we conducted an extensive empirical study targeting multiple detector architectures and two challenging detection tasks in real-world settings: traffic signs and vehicles. Using the diverse, methodically collected videos captured from driving cars and flying drones, incorporating physical object trigger deployments in authentic scenes, we investigated the viability of physical object-triggered backdoor attacks in application settings. Our findings revealed 8 key insights. Importantly, the prevalent "digital" data poisoning method for injecting backdoors into models does not lead to effective attacks against detectors in the real world, although proven effective in classification tasks. We construct a new, cost-efficient attack method, dubbed MORPHING, incorporating the unique nature of detection tasks; ours is remarkably successful in injecting physical object-triggered backdoors, even capable of poisoning triggers with clean label annotations or invisible triggers without diminishing the success of physical object triggered backdoors. We discovered that the defenses curated are ill-equipped to safeguard detectors against such attacks. To underscore the severity of the threat and foster further research, we, for the first time, release an extensive video test set of real-world backdoor attacks. Our study not only establishes the credibility and seriousness of this threat but also serves as a clarion call to the research community to advance backdoor defenses in the context of object detection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员