In this work, we aim to introduce distributed collaborative beamforming (DCB) into AAV swarms and handle the eavesdropper collusion by controlling the corresponding signal distributions. Specifically, we consider a two-way DCB-enabled aerial communication between two AAV swarms and construct these swarms as two AAV virtual antenna arrays. Then, we minimize the two-way known secrecy capacity and maximum sidelobe level to avoid information leakage from the known and unknown eavesdroppers, respectively. Simultaneously, we also minimize the energy consumption of AAVs when constructing virtual antenna arrays. Due to the conflicting relationships between secure performance and energy efficiency, we consider these objectives by formulating a multi-objective optimization problem, which is NP-hard and with a large number of decision variables. Accordingly, we design a novel generative swarm intelligence (GenSI) framework to solve the problem with less overhead, which contains a conditional variational autoencoder (CVAE)-based generative method and a proposed powerful swarm intelligence algorithm. In this framework, CVAE can collect expert solutions obtained by the swarm intelligence algorithm in other environment states to explore characteristics and patterns, thereby directly generating high-quality initial solutions in new environment factors for the swarm intelligence algorithm to search solution space efficiently. Simulation results show that the proposed swarm intelligence algorithm outperforms other state-of-the-art baseline algorithms, and the GenSI can achieve similar optimization results by using far fewer iterations than the ordinary swarm intelligence algorithm. Experimental tests demonstrate that introducing the CVAE mechanism achieves a 58.7% reduction in execution time, which enables the deployment of GenSI even on AAV platforms with limited computing power.
翻译:暂无翻译