The uses of robots are changing from static environments in factories to encompass novel concepts such as Human-Robot Collaboration in unstructured settings. Pre-programming all the functionalities for robots becomes impractical, and hence, robots need to learn how to react to new events autonomously, just like humans. However, humans, unlike machines, are naturally skilled in responding to unexpected circumstances based on either experiences or observations. Hence, embedding such anthropoid behaviours into robots entails the development of neuro-cognitive models that emulate motor skills under a robot learning paradigm. Effective encoding of these skills is bound to the proper choice of tools and techniques. This paper studies different motion and behaviour learning methods ranging from Movement Primitives (MP) to Experience Abstraction (EA), applied to different robotic tasks. These methods are scrutinized and then experimentally benchmarked by reconstructing a standard pick-n-place task. Apart from providing a standard guideline for the selection of strategies and algorithms, this paper aims to draw a perspectives on their possible extensions and improvements
翻译:机器人的用途正在从工厂的静态环境变化,而正在从工厂中的静态环境变化到包含无结构环境中的人类机器人协作等新概念。 预编机器人的所有功能变得不切实际,因此,机器人需要学会如何自主地应对新事件,就像人类一样。 然而,人类与机器不同,自然地具有技能,根据经验或观察对意外情况作出反应。因此,将这种人类行为嵌入机器人需要开发神经认知模型,在机器人学习范式下模仿运动技能。 有效编码这些技能与正确选择工具和技术息息相关。 本文研究不同的运动和行为学习方法, 从“ 移动光学” 到“ 经验摘要” (EA), 适用于不同的机器人任务。 这些方法经过仔细审查,然后通过重新制定标准选位任务进行实验性基准。 除了为选择策略和算法提供标准指南外,本文还旨在从可能的扩展和改进的角度出发。