Superpixel is generated by automatically clustering pixels in an image into hundreds of compact partitions, which is widely used to perceive the object contours for its excellent contour adherence. Although some works use the Convolution Neural Network (CNN) to generate high-quality superpixel, we challenge the design principles of these networks, specifically for their dependence on manual labels and excess computation resources, which limits their flexibility compared with the traditional unsupervised segmentation methods. We target at redefining the CNN-based superpixel segmentation as a lifelong clustering task and propose an unsupervised CNN-based method called LNS-Net. The LNS-Net can learn superpixel in a non-iterative and lifelong manner without any manual labels. Specifically, a lightweight feature embedder is proposed for LNS-Net to efficiently generate the cluster-friendly features. With those features, seed nodes can be automatically assigned to cluster pixels in a non-iterative way. Additionally, our LNS-Net can adapt the sequentially lifelong learning by rescaling the gradient of weight based on both channel and spatial context to avoid overfitting. Experiments show that the proposed LNS-Net achieves significantly better performance on three benchmarks with nearly ten times lower complexity compared with other state-of-the-art methods.


翻译:超级像素是由将像素自动组合成成成像成像成像成像成像成像成像成像成像成像成像成像成像成像,这被广泛用来观察对象的轮廓。虽然有些作品使用进化神经网络(CNN)来产生高质量的超级像素,但我们对这些网络的设计原则提出了挑战,特别是它们依赖手工标签和超量计算资源,这限制了它们的灵活性,而与传统的不受监督的分化方法相比,它们限制了它们的灵活性。我们的目标是将基于CNN的超级像素分割重新定位为终身集成任务,并提出一种以CNN为基础的不受监督的、称为LNS-Net的方法。LNS-Net可以以非显性、终身的方式学习超像素,而不用任何手动标签。具体地说,我们为LNS-Net网络提议了一个轻量的特性嵌入器,以便有效地生成对集束友好的特性。有了这些特性,可以自动将种子节点指派给集像素类,作为终身集成像素的任务。此外,我们的LNS-Net网络可以调整连续终身学习方式,根据两个频道和空间背景的重量梯度的梯度梯度梯度的梯度,在两个频道和空间环境上重新计算上都能的梯度的梯度梯度梯度,可以比,可以比比更精确地,比更精确地显示其他的精确性,比比比比比性地显示其他的性,比性能,比比比比性能比比比性性能比性能性能比比性能比性能比性能性能性能性能比性能,比比比比比比性能。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
「PPT」深度学习中的不确定性估计
专知
27+阅读 · 2019年7月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【深度】可解释性与deep learning的发展
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
「PPT」深度学习中的不确定性估计
专知
27+阅读 · 2019年7月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【深度】可解释性与deep learning的发展
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员