Direction-of-arrival (DOA) estimation is one of the most demanding tasks for the millimeter wave (mmWave) communication of massive multiple-input multiple-output (MIMO) systems with the hybrid beamforming (HBF) architecture. In this paper, we focus on the optimization of the HBF matrix for receiving pilots to enhance the DOA estimation performance. Motivated by the fact that many existing DOA estimation algorithms can achieve the Cram\'{e}r-Rao bound (CRB), we formulate the HBF optimization problem aiming at minimizing the CRB with the prior knowledge of the rough DOA range. Then, to tackle the problem with intractable non-convex constraint introduced by the analog beamformers, we propose an efficient manifold optimization (MO) based algorithm. Simulation results demonstrate the significant improvement of the proposed CRB-MO algorithm over the conventional random HBF algorithm, and provide insights for the HBF design in the beam training stage for practical applications.
翻译:抵达方向估计是千兆瓦(mmWave)与混合波形结构(HBF)进行大规模多投入多产出(MIMO)系统通信的最艰巨任务之一。在本文件中,我们侧重于优化氢氟碳化物矩阵矩阵以接收试点,以提高DA估计性能。许多现有的DA估计算法能够实现Cram\{e}r-Rao绑定(CRB),我们制定了氢氟碳化物优化问题,目的是根据以前对粗略DOA范围的了解而最大限度地减少CRB。然后,为了解决模拟光束仪引入的棘手的非电离子限制问题,我们建议采用高效的基于多式优化的算法。模拟结果表明拟议的CRB-MO算法与传统的随机氢氟化物算法相比有了重大改进,并为BFF用于实际应用的培训阶段的设计提供了深刻见解。