How will you repair a physical object with some missings? You may imagine its original shape from previously captured images, recover its overall (global) but coarse shape first, and then refine its local details. We are motivated to imitate the physical repair procedure to address point cloud completion. To this end, we propose a cross-modal shape-transfer dual-refinement network (termed CSDN), a coarse-to-fine paradigm with images of full-cycle participation, for quality point cloud completion. CSDN mainly consists of "shape fusion" and "dual-refinement" modules to tackle the cross-modal challenge. The first module transfers the intrinsic shape characteristics from single images to guide the geometry generation of the missing regions of point clouds, in which we propose IPAdaIN to embed the global features of both the image and the partial point cloud into completion. The second module refines the coarse output by adjusting the positions of the generated points, where the local refinement unit exploits the geometric relation between the novel and the input points by graph convolution, and the global constraint unit utilizes the input image to fine-tune the generated offset. Different from most existing approaches, CSDN not only explores the complementary information from images but also effectively exploits cross-modal data in the whole coarse-to-fine completion procedure. Experimental results indicate that CSDN performs favorably against ten competitors on the cross-modal benchmark.
翻译:如何用一些缺失的图像来修复物理对象? 您可以想象它最初的形状, 从先前捕获的图像中恢复其整体( 全球) 但粗糙的形状, 然后修改其本地细节 。 我们被激励模仿物理修复程序, 解决点云的完成问题 。 为此, 我们提出一个跨模式的形状转移双精度精度网络( 以CSDN为主 ), 即一个粗略到粗略的模型, 配有全周期参与的图像, 以完成质量点云 。 CSDN 主要由“ 组合” 和“ 双精度调整” 模块组成, 以应对跨模式的挑战 。 第一个模块将内在的形状特性从单个图像中传输, 指导缺失点云层云区域的几何生成。 为此, 我们建议 IPADAIN 将图像和部分点云的全球性特征嵌入到完成。 第二个模块通过调整生成点的位置, 精度输出粗度的输出精度, 当地精度单位利用新和输入点与双曲线输入点之间的地理对比关系, 而全球约束单位则利用输入图像, 。 将输入的精度图像从 CSDIS的精度图像 。