A main task in condensed-matter physics is to recognize, classify, and characterize phases of matter and the corresponding phase transitions, for which machine learning provides a new class of research tools due to the remarkable development in computing power and algorithms. Despite much exploration in this new field, usually different methods and techniques are needed for different scenarios. Here, we present SimCLP: a simple framework for contrastive learning phases of matter, which is inspired by the recent development in contrastive learning of visual representations. We demonstrate the success of this framework on several representative systems, including classical and quantum, single-particle and many-body, conventional and topological. SimCLP is flexible and free of usual burdens such as manual feature engineering and prior knowledge. The only prerequisite is to prepare enough state configurations. Furthermore, it can generate representation vectors and labels and hence help tackle other problems. SimCLP therefore paves an alternative way to the development of a generic tool for identifying unexplored phase transitions.
翻译:浓缩物质物理学的一项主要任务是识别、分类和定性物质的各个阶段和相应的阶段过渡,由于计算能力和算法的显著发展,机器学习为这些阶段提供了一种新的研究工具。尽管在这个新的领域进行了许多探索,但通常需要不同的方法和技术来应对不同的情景。在这里,我们介绍SimCLP:具有鲜明对比的事物学习阶段的简单框架,这种框架是最近对视觉表现的对比性学习中产生的。我们展示了这一框架在若干具有代表性的系统上的成功,包括古典和量、单粒子和多体、传统和地形学。SimCLP是灵活的,没有手工特征工程和先前知识等通常的负担。唯一的先决条件是准备足够的状态配置。此外,它能够产生代表性的矢量和标签,从而帮助解决其他问题。因此,SimCLP为开发一种用于确定未探索阶段过渡的通用工具铺平了一条路。