Navigating spatially varied and dynamic environments is one of the key tasks for autonomous agents. In this paper we present a novel method of navigating a mobile platform with one or multiple 3D-sonar sensors. Moving a mobile platform and subsequently any 3D-sonar sensor on it, will create signature variations over time of the echoed reflections in the sensor readings. An approach is presented to create a predictive model of these signature variations for any motion type. Furthermore, the model is adaptive and works for any position and orientation of one or multiple sonar sensors on a mobile platform. We propose to use this adaptive model and fuse all sensory readings to create a layered control system allowing a mobile platform to perform a set of primitive motions such as collision avoidance, obstacle avoidance, wall following and corridor following behaviours to navigate an environment with dynamically moving objects within it. This paper describes the underlying theoretical base of the entire navigation model and validates it in a simulated environment with results that shows the system is stable and delivers expected behaviour for several tested spatial configurations of one or multiple sonar sensors that can complete an autonomous navigation task.
翻译:导航空间多样性和动态环境是自主物剂的关键任务之一。 在本文中, 我们展示了一种新型的移动平台导航方法, 包括一个或多个 3D 传感器。 移动一个移动平台并随后在其上移动任何 3D 传感器, 将随着传感器读数中回声反射的一段时间而产生签名变化。 提出一种方法来为任何运动类型创建这些签名变异的预测模型。 此外, 该模型是针对移动平台上一个或多个声纳传感器的任何位置和方向的适应和工作模式。 我们提议使用这一适应性模型并激活所有感官读数, 以创建一个分层控制系统, 使移动平台能够执行一系列原始动作, 如避免碰撞、 障碍避免、 跟踪和走廊 。 本文描述了整个导航模型的基本理论基础, 并在模拟环境中验证它, 其结果显示系统是稳定的, 并且为能够完成自主导航任务的一个或多个感应感应感应传感器的若干测试的空间配置提供了预期的行为。