Effectively positioning pursuers in pursuit-evasion games without prior knowledge of evader locations remains a significant challenge. A novel approach that combines game-theoretic control theory with Graph Neural Networks is introduced in this work. By conceptualizing pursuer configurations as strategic arrangements and representing them as graphs, a Graph Characteristic Space is constructed via multi-objective optimization to identify Pareto-optimal configurations. A Graph Convolutional Network (GCN) is trained on these Pareto-optimal graphs to generate strategically effective initial configurations, termed "hot starts". Empirical evaluations demonstrate that the GCN-generated hot starts provide a significant advantage over random configurations. In scenarios considering multiple pursuers and evaders, this method hastens the decline in evader survival rates, reduces pursuer travel distances, and enhances containment, showcasing clear strategic benefits.
翻译:暂无翻译