The semantics of the environment, such as the terrain type and property, reveals important information for legged robots to adjust their behaviors. In this work, we present a framework that learns semantics-aware locomotion skills from perception for quadrupedal robots, such that the robot can traverse through complex offroad terrains with appropriate speeds and gaits using perception information. Due to the lack of high-fidelity outdoor simulation, our framework needs to be trained directly in the real world, which brings unique challenges in data efficiency and safety. To ensure sample efficiency, we pre-train the perception model with an off-road driving dataset. To avoid the risks of real-world policy exploration, we leverage human demonstration to train a speed policy that selects a desired forward speed from camera image. For maximum traversability, we pair the speed policy with a gait selector, which selects a robust locomotion gait for each forward speed. Using only 40 minutes of human demonstration data, our framework learns to adjust the speed and gait of the robot based on perceived terrain semantics, and enables the robot to walk over 6km without failure at close-to-optimal speed.
翻译:环境的语义学, 如地形类型和属性, 揭示了对脚步机器人的重要信息, 以调整他们的行为。 在这项工作中, 我们提出了一个框架, 从四重机器人的感知中学习语义觉动技能, 这样机器人就可以通过复杂的越野地形, 使用感知信息以适当的速度和轨迹穿行。 由于缺乏高不洁的户外模拟, 我们的框架需要直接在现实世界中接受培训, 这给数据的效率和安全带来了独特的挑战。 为确保样本效率, 我们预先用非路径驱动数据集对感知模型进行测试。 为避免真实世界政策探索的风险, 我们利用人类演示来培训速度政策, 从摄像头图像中选择理想的前进速度。 为了最大限度的可移动性, 我们把速度政策与一个网格选择器配对齐, 它为每个前进速度选择一个坚固的 Locomotion 网格。 仅使用40分钟的人类演示数据, 我们的框架可以根据感知的地形精度来调整机器人的速度和在近距离速度上拉链。