Current efficient LiDAR-based detection frameworks are lacking in exploiting object relations, which naturally present in both spatial and temporal manners. To this end, we introduce a simple, efficient, and effective two-stage detector, termed as Ret3D. At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules to capture the spatial and temporal relations accordingly. More Specifically, intra-frame relation module (IntraRM) encapsulates the intra-frame objects into a sparse graph and thus allows us to refine the object features through efficient message passing. On the other hand, inter-frame relation module (InterRM) densely connects each object in its corresponding tracked sequences dynamically, and leverages such temporal information to further enhance its representations efficiently through a lightweight transformer network. We instantiate our novel designs of IntraRM and InterRM with general center-based or anchor-based detectors and evaluate them on Waymo Open Dataset (WOD). With negligible extra overhead, Ret3D achieves the state-of-the-art performance, being 5.5% and 3.2% higher than the recent competitor in terms of the LEVEL 1 and LEVEL 2 mAPH metrics on vehicle detection, respectively.


翻译:在探索自然以空间和时间方式自然存在的天体关系方面,目前缺乏以LiDAR为基础的基于LiDAR为基础的高效探测框架。为此目的,我们引入了一个简单、高效和有效的两阶段探测器,称为Ret3D。在Ret3D的核心是利用新的内部和机体间关系模块来相应地捕捉空间和时间关系。更具体地说,内部关系模块(内部关系模块)将机体内物体封成一个稀薄的图表,从而使我们能够通过有效传递信息来改进天体特征。另一方面,机体关系模块(InterRM)在相应的跟踪序列中将每个物体紧密连接起来,并利用这种时间信息通过轻量变压器网络来进一步高效地加强其表现。我们用一般的中基或锚基探测器对我们的IntraRM和机际关系新设计进行回现,并在Waymo Open D数据集(WOD)上对它们进行评价。Ret3D通过可忽略的外加电路多的电路段,其达到最新状态性能性,在1和2MIS级别上分别高于5.5%和3.2%。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月6日
Fully Sparse 3D Object Detection
Arxiv
0+阅读 · 2022年10月3日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员