Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provide a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) -- the task of answering a commonsense question without any pre-defined choices -- using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.
翻译:当前的常识推理研究侧重于开发使用常识推理来回答多种选择问题的模型。然而,用于回答多种选择问题的系统在应用中可能没有用处,无法提供可供选择的少量候选人答案清单。作为使常识推理研究更加现实的一个步骤,我们提议研究开放常识推理(OpenCSR) -- -- 在没有预先确定的任何选择的情况下回答常识问题的任务 -- -- 使用仅以自然语言写成的一套常识事实作为资源。开放CSR具有挑战性,因为有许多问题需要隐含的多动脉推理。作为OpenCSR的一个方法,我们建议DFact,这是一个针对多动知识事实的高效差异模型。为了评价开放CSR的方法,我们调整了几个流行常识推理推理基准,并通过众包为每个测试问题收集多个新的答案。实验显示,DFact在很大的范围内超越了强大的基线方法。