Klaus showed that the Oriented Matroid Complementarity Problem (OMCP) can be solved by a reduction to the problem of sink-finding in a unique sink orientation (USO) if the input is promised to be given by a non-degenerate extension of a P-matroid. In this paper, we investigate the effect of degeneracy on this reduction. On the one hand, this understanding of degeneracies allows us to prove a linear lower bound on the number of vertex evaluations required for sink-finding in P-matroid USOs, the set of USOs obtainable through Klaus' reduction. On the other hand, it allows us to adjust Klaus' reduction to also work with degenerate instances. Furthermore, we introduce a total search version of the P-Matroid Oriented Matroid Complementarity Problem (P-OMCP). Given any extension of any oriented matroid M, by reduction to a total search version of USO sink-finding we can either solve the OMCP, or provide a polynomial-time verifiable certificate that M is not a P-matroid. This places the total search version of the P-OMCP in the complexity class Unique End of Potential Line (UEOPL).
翻译:暂无翻译