We discuss the problem of numerically backpropagating Hessians through ordinary differential equations (ODEs) in various contexts and elucidate how different approaches may be favourable in specific situations. We discuss both theoretical and pragmatic aspects such as, respectively, bounds on computational effort and typical impact of framework overhead. Focusing on the approach of hand-implemented ODE-backpropagation, we develop the computation for the Hessian of orbit-nonclosure for a mechanical system. We also clarify the mathematical framework for extending the backward-ODE-evolution of the costate-equation to Hessians, in its most generic form. Some calculations, such as that of the Hessian for orbit non-closure, are performed in a language, defined in terms of a formal grammar, that we introduce to facilitate the tracking of intermediate quantities. As pedagogical examples, we discuss the Hessian of orbit-nonclosure for the higher dimensional harmonic oscillator and conceptually related problems in Newtonian gravitational theory. In particular, applying our approach to the figure-8 three-body orbit, we readily rediscover a distorted-figure-8 solution originally described by Sim\'o. Possible applications may include: improvements to training of `neural ODE'- type deep learning with second-order methods, numerical analysis of quantum corrections around classical paths, and, more broadly, studying options for adjusting an ODE's initial configuration such that the impact on some given objective function is small.


翻译:我们讨论在各种情况下通过普通差异方程式(ODEs)反反反向对赫森人进行反射的问题,并阐明不同方法在特定情况下可能有哪些好处。我们讨论理论和务实两方面的问题,如计算努力的界限和框架间接费用的典型影响。我们侧重于手动实施ODE-后背反反射法的方法,我们为机械系统开发轨道不关闭的赫森人计算方法。我们还澄清了将成本偏差的后向-ODE-演进以最通用的形式扩展到赫森人的数学框架。我们讨论一些计算,例如赫森人对轨道不关闭的影响,用一种语言进行计算,用正式的语法定义,以便利对中间数量进行跟踪。作为教学实例,我们讨论轨道偏差的赫森人对高度的正向调动振动振动振动振动的轨迹,以及在概念化理论中与概念有关的问题。特别是用我们的方法对原八号轨道的调整进行影响,例如用一种正式的语法定义,我们用来跟踪中间数量。我们介绍的轨变动的变动方法,通过模拟的变动的变动法的变动法,将模型的变换的变换的轨法的变换方法包括模拟的变换的变换的平式的变换的变换的轨道功能。

0
下载
关闭预览

相关内容

反向传播一词严格来说仅指用于计算梯度的算法,而不是指如何使用梯度。但是该术语通常被宽松地指整个学习算法,包括如何使用梯度,例如通过随机梯度下降。反向传播将增量计算概括为增量规则中的增量规则,该规则是反向传播的单层版本,然后通过自动微分进行广义化,其中反向传播是反向累积(或“反向模式”)的特例。 在机器学习中,反向传播(backprop)是一种广泛用于训练前馈神经网络以进行监督学习的算法。对于其他人工神经网络(ANN)都存在反向传播的一般化–一类算法,通常称为“反向传播”。反向传播算法的工作原理是,通过链规则计算损失函数相对于每个权重的梯度,一次计算一层,从最后一层开始向后迭代,以避免链规则中中间项的冗余计算。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员