We discuss the problem of numerically backpropagating Hessians through ordinary differential equations (ODEs) in various contexts and elucidate how different approaches may be favourable in specific situations. We discuss both theoretical and pragmatic aspects such as, respectively, bounds on computational effort and typical impact of framework overhead. Focusing on the approach of hand-implemented ODE-backpropagation, we develop the computation for the Hessian of orbit-nonclosure for a mechanical system. We also clarify the mathematical framework for extending the backward-ODE-evolution of the costate-equation to Hessians, in its most generic form. Some calculations, such as that of the Hessian for orbit non-closure, are performed in a language, defined in terms of a formal grammar, that we introduce to facilitate the tracking of intermediate quantities. As pedagogical examples, we discuss the Hessian of orbit-nonclosure for the higher dimensional harmonic oscillator and conceptually related problems in Newtonian gravitational theory. In particular, applying our approach to the figure-8 three-body orbit, we readily rediscover a distorted-figure-8 solution originally described by Sim\'o. Possible applications may include: improvements to training of `neural ODE'- type deep learning with second-order methods, numerical analysis of quantum corrections around classical paths, and, more broadly, studying options for adjusting an ODE's initial configuration such that the impact on some given objective function is small.
翻译:我们讨论在各种情况下通过普通差异方程式(ODEs)反反反向对赫森人进行反射的问题,并阐明不同方法在特定情况下可能有哪些好处。我们讨论理论和务实两方面的问题,如计算努力的界限和框架间接费用的典型影响。我们侧重于手动实施ODE-后背反反射法的方法,我们为机械系统开发轨道不关闭的赫森人计算方法。我们还澄清了将成本偏差的后向-ODE-演进以最通用的形式扩展到赫森人的数学框架。我们讨论一些计算,例如赫森人对轨道不关闭的影响,用一种语言进行计算,用正式的语法定义,以便利对中间数量进行跟踪。作为教学实例,我们讨论轨道偏差的赫森人对高度的正向调动振动振动振动振动的轨迹,以及在概念化理论中与概念有关的问题。特别是用我们的方法对原八号轨道的调整进行影响,例如用一种正式的语法定义,我们用来跟踪中间数量。我们介绍的轨变动的变动方法,通过模拟的变动的变动法的变动法,将模型的变换的变换的轨法的变换方法包括模拟的变换的变换的平式的变换的变换的轨道功能。