As input data distributions evolve, the predictive performance of machine learning models tends to deteriorate. In practice, new input data tend to come without target labels. Then, state-of-the-art techniques model input data distributions or model prediction distributions and try to understand issues regarding the interactions between learned models and shifting distributions. We suggest a novel approach that models how explanation characteristics shift when affected by distribution shifts. We find that the modeling of explanation shifts can be a better indicator for detecting out-of-distribution model behaviour than state-of-the-art techniques. We analyze different types of distribution shifts using synthetic examples and real-world data sets. We provide an algorithmic method that allows us to inspect the interaction between data set features and learned models and compare them to the state-of-the-art. We release our methods in an open-source Python package, as well as the code used to reproduce our experiments.
翻译:随着投入数据分布的演变,机器学习模型的预测性性能往往会恶化。在实践中,新的输入数据往往会在没有目标标签的情况下出现。然后,最先进的技术模型输入数据分布或模型预测分布,并试图了解与所学模型和变化分布之间相互作用有关的问题。我们建议一种新颖的方法,模型在分布变化的影响下如何解释特征的转变。我们发现解释性转变的模型化比最先进的技术更能用来检测分配性模型行为。我们利用合成实例和真实世界数据集分析不同类型的分配转移。我们提供了一种算法方法,使我们能够检查数据集特征和所学模型之间的相互作用,并将它们与最新技术进行比较。我们用开放源的Python软件包和用于复制我们实验的代码来发布我们的方法。</s>